1
|
Uro-Coste C, Lambert C, Audard V, Couzi L, Caillard S, Büchler M, Del Bello A, Malvezzi P, Pernin V, Colosio C, Mesnard L, Bertrand D, Martinez F, Ducloux D, Poulain C, Thierry A, Danthu C, Greze C, Lanaret C, Moal V, Hertig A, Dantal J, Legendre C, Chatelet V, Sicard A, Gosset C, Maillard N, Duveau A, Petit C, Kamar N, Heng AE, Anglicheau D, Garrouste C. Prophylactic treatment of FSGS recurrence in patients who relapsed on a previous kidney graft. Nephrol Dial Transplant 2025; 40:475-483. [PMID: 38794882 PMCID: PMC11879060 DOI: 10.1093/ndt/gfae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Recurrence of focal segmental glomerulosclerosis (FSGS) is common after kidney transplantation and is classically associated with a significant decrease in graft survival. A major risk factor is a prior history of FSGS recurrence on a previous graft. This analysis reports the impact of a prophylactic treatment of FSGS recurrence in very high-risk patients who experienced a recurrence on a previous graft. METHODS We performed a retrospective multicentre observational study in 25 French transplantation centres. The inclusion criteria were patients aged more than 18 years who had undergone kidney transplant between 31 December 2004 and 31 December 2020, and who had a history of FSGS recurrence on a previous graft. RESULTS We identified 66 patients: 40 received prophylactic treatment (PT+), including intravenous cyclosporine and/or rituximab and/or plasmapheresis, and 26 did not receive any prophylactic treatment (PT-). The time to progression to end-stage kidney disease was similar between groups. The PT+ group was younger at FSGS diagnosis and at the time of kidney retransplantation and lost their previous graft faster. The overall recurrence rate was 72.7% (76.9% in the PT- group and 70.0% in the PT+ group, P = .54). At least partial remission was achieved in 87.5% of patients. The 5-year graft survival was 67.7% [95% confidence interval (CI) 53.4%-78.4%]: 65.1% (95% CI 48.7%-77.4%) in patients with FSGS recurrence vs 77.3% (95% CI 43.8%-92.3%) in patients without recurrence (P = .48). CONCLUSION Our study suggests that prophylactic treatment should not be used routinely in patients receiving a second transplantation after recurrence of FSGS on a previous graft. The recurrence rate is high regardless of the use of prophylactic treatment. However, the 5-year graft survival remains satisfactory.
Collapse
Affiliation(s)
| | - Céline Lambert
- Unité de Biostatistiques, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris, Service de Néphrologie et Transplantation Centre de Référence Maladie Rare « Syndrome Néphrotique Idiopathique », Hôpitaux Universitaires Henri-Mondor, Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Lionel Couzi
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses, CHU de Bordeaux, Bordeaux, France
| | - Sophie Caillard
- Service de Néphrologie, University Hospital, Strasbourg, France
| | - Matthias Büchler
- Service de Néphrologie et Immunologie Clinique, CHRU de Tours, Tours, France
| | - Arnaud Del Bello
- Département de Néphrologie et Transplantation d'Organes, CHU Toulouse, INSERM U1043, IFR–BMT, Université Paul Sabatier, Toulouse, France
| | - Paolo Malvezzi
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, CHU Grenoble-Alpes, Grenoble, France
| | - Vincent Pernin
- Service de Néphrologie, Dialyse et Transplantation, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | | | - Laurent Mesnard
- Assistance Publique – Hôpitaux de Paris, Soins Intensifs Néphrologiques et Rein Aigu, APHP Sorbonne Université, Hôpital Tenon, Paris, France
| | | | - Frank Martinez
- Assistance Publique des Hôpitaux de Paris, Service de Néphrologie et Transplantation, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| | - Didier Ducloux
- Service de Néphrologie, Dialyse et Transplantation, CHU Besançon, Besançon, France
| | - Coralie Poulain
- Service de Néphrologie-Médecine Interne-Dialyse-Transplantation, CHU d'Amiens, Amiens, France
| | - Antoine Thierry
- Service de Néphrologie-Hémodialyse-Transplantation Rénale, CHU de Poitiers, Poitiers, France
| | - Clément Danthu
- Service de Néphrologie, Dialyse et Transplantation, CHU Limoges, Limoges, France
| | - Clarisse Greze
- Service de Néphrologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Valérie Moal
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Hôpital Conception, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | | | - Jacques Dantal
- Institut de Transplantation Urologie Néphrologie (ITUN), Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
| | - Christophe Legendre
- Assistance Publique des Hôpitaux de Paris, Service de Néphrologie et Transplantation, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| | - Valérie Chatelet
- Centre Universitaire des Maladies Rénales, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Antoine Sicard
- Service de Néphrologie, Dialyse et Transplantation, CHU Nice, Nice, France
| | - Clément Gosset
- Service de Néphrologie, Dialyse et Transplantation, CHU Nice, Nice, France
| | - Nicolas Maillard
- Service de Néphrologie et Transplantation, CHU Saint-Etienne, Saint-Etienne, France
| | - Agnès Duveau
- Service de Néphrologie, CHU Angers, Angers, France
| | - Clémence Petit
- Institut de Transplantation Urologie Néphrologie (ITUN), Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
| | - Nassim Kamar
- Département de Néphrologie et Transplantation d'Organes, CHU Toulouse, INSERM U1043, IFR–BMT, Université Paul Sabatier, Toulouse, France
| | | | - Dany Anglicheau
- Assistance Publique des Hôpitaux de Paris, Service de Néphrologie et Transplantation, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| | - Cyril Garrouste
- Service de Néphrologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
2
|
Altintas MM, Agarwal S, Sudhini Y, Zhu K, Wei C, Reiser J. Pathogenesis of Focal Segmental Glomerulosclerosis and Related Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:329-353. [PMID: 39854184 PMCID: PMC11875227 DOI: 10.1146/annurev-pathol-051220-092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Focal segmental glomerulosclerosis (FSGS) is the morphologic manifestation of a spectrum of kidney diseases that primarily impact podocytes, cells that create the filtration barrier of the glomerulus. As its name implies, only parts of the kidney and glomeruli are affected, and only a portion of the affected glomerulus may be sclerosed. Although the diagnosis is based primarily on microscopic features, patient stratification relies on clinical data such as proteinuria and etiological criteria. FSGS affects both children and adults and has an elevated risk of progression to end-stage renal disease. The prevalence of FSGS is rising among various populations, and the efficacy of various therapies is limited. Therefore, understanding the pathophysiology of FSGS and developing targeted therapies to address the complex needs of FSGS patients are topics of great interest that are currently being studied across various clinical trials. We discuss the etiology of FSGS, describe the major contributing pathophysiological pathways, and outline emerging therapeutic strategies along with their pitfalls.
Collapse
Affiliation(s)
- Mehmet M Altintas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | | | - Yashwanth Sudhini
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | - Changli Wei
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| | - Jochen Reiser
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;
| |
Collapse
|
3
|
Montecillo J, Pirker T, Pemberton C, Chew-Harris J. suPAR in cardiovascular disease. Adv Clin Chem 2024; 121:89-131. [PMID: 38797545 DOI: 10.1016/bs.acc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR), the soluble counterpart of urokinase plasminogen activator receptor, is found in the circulation at various levels. suPAR and its parent molecule, cell surface uPAR, exhibit similar structure and extracellular functional roles facilitating fibrinolysis, cellular adhesion, and migration. Studies have assessed the correlation between suPAR in cardiovascular disease (CVD). It is postulated that suPAR may serve as an indicator of inflammatory activation and burden during CVD progression. Increased suPAR independently predicts poorer outcomes in acute coronary syndromes, in heart failure, as well as in coronary artery disease and atherosclerosis. To guide translation into clinical utization, suPAR has been assessed in numerous CVD settings for improved risk discrimination independently or in association with established traditional risk factors. Whilst the involvement of suPAR has been explored in other diseases such as kidney diseases and cancer, there is only emerging evidence of suPAR's mechanistic involvement in cardiovascular disease. In this review, we provide a background into suPAR and its potential role as a biomarker in CVD.
Collapse
Affiliation(s)
- Jaya Montecillo
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Thomas Pirker
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Janice Chew-Harris
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
4
|
Abstract
Nephrotic syndrome (NS) encompasses a variety of disease processes leading to heavy proteinuria and edema. Minimal change disease (MCD) remains the most common primary cause of NS, as well as the most responsive to pharmacologic treatment with often minimal to no chronic kidney disease. Other causes of NS include focal segmental glomerulosclerosis, which follows MCD, and secondary causes, including extrarenal or systemic diseases, infections, and drugs. Although initial diagnosis relies on clinical findings as well as urine and blood chemistries, renal biopsy and genetic testing are important diagnostic tools, especially when considering non-MCD NS. Moreover, biomarkers in urine and serum have become important areas for research in this disease. NS progression and prognosis are variable and depend on etiology, with corticosteroids being the mainstay of treatment. Other alternative therapies found to be successful in inducing and maintaining remission include calcineurin inhibitors and rituximab. Disease course can range from recurrent disease relapse with or without acute kidney injury to end-stage renal disease in some cases. Given the complex pathogenesis of NS, which remains incompletely understood, complications are numerous and diverse and include infections, electrolyte abnormalities, acute kidney injury, and thrombosis. Pediatricians must be aware of the presentation, complications, and overall long-term implications of NS and its treatment.
Collapse
|
5
|
Wei C, Spear R, Hahm E, Reiser J. suPAR, a Circulating Kidney Disease Factor. Front Med (Lausanne) 2021; 8:745838. [PMID: 34692736 PMCID: PMC8526732 DOI: 10.3389/fmed.2021.745838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is a multifaceted, GPI-anchored three-domain protein. Release of the receptor results in variable levels of soluble uPAR (suPAR) in the blood circulation. suPAR levels have been linked to many disease states. In this mini-review, we discuss suPAR as a key circulating molecule mediating kidney disease with a particular focus on differently spliced isoforms.
Collapse
Affiliation(s)
- Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ryan Spear
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Eunsil Hahm
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
6
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Cara-Fuentes G, Smoyer WE. Biomarkers in pediatric glomerulonephritis and nephrotic syndrome. Pediatr Nephrol 2021; 36:2659-2673. [PMID: 33389089 DOI: 10.1007/s00467-020-04867-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Glomerular diseases are often chronic or recurring and thus associated with a tremendous physical, psychological, and economic burden. Their etiologies are often unknown, and their pathogeneses are frequently poorly understood. The diagnoses and management of these diseases are therefore based on clinical features, traditional laboratory markers, and, often, kidney pathology. However, the clinical presentation can be highly variable, the kidney pathology may not establish a definitive diagnosis, and the therapeutic responses and resulting clinical outcomes are often unpredictable. To try to address these challenges, significant research efforts have been made over the last decade to identify potential biomarkers that can help clinicians optimize the diagnosis and prognosis at clinical presentation, as well as help predict long-term outcomes. Unfortunately, these efforts have to date only identified a single biomarker for glomerular disease that has been fully validated and developed for widespread clinical use (anti-PLA2R antibodies to diagnose membranous nephropathy). In this manuscript, we review the definitions and development of biomarkers, as well as the current knowledge on both historical and novel candidate biomarkers of glomerular disease, with an emphasis on those associated with idiopathic nephrotic syndrome.
Collapse
Affiliation(s)
- Gabriel Cara-Fuentes
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado, 12700 E 19th Ave, R2 building, Room 7420D, Aurora, CO, 80045, USA.
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Sun K, Xie Q, Hao CM. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:350-358. [PMID: 34604342 PMCID: PMC8443927 DOI: 10.1159/000517108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a histologic pattern characterized by focal glomerular scarring, which often progresses to systemic and diffuse glomerulosclerosis. Previous studies have emphasized that the initiation of classic FSGS occurs in podocytes. The dysfunction and loss of podocytes have been associated with the development of proteinuria and the progression of various diseases. In addition, primary, secondary, and genetic FSGS are caused by different mechanisms of podocyte injury. SUMMARY The potential sources and mechanism of podocyte supplementation are the focus of our current research. Increasing attention has been paid to the role played by parietal epithelial cells (PECs) during the progression of FSGS. PECs are not only the primary influencing factors in glomerulosclerosis lesions but also have repair abilities, which remain a focus of debate. Notably, other resident glomerular cells also play significant roles in the progression of this disease. KEY MESSAGE In this review, we focus on the mechanism of scarring in FSGS and discuss current and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ke Sun
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- Nephrology Division, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
9
|
den Braanker DJW, Maas RJ, Deegens JK, Yanginlar C, Wetzels JFM, van der Vlag J, Nijenhuis T. Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis. Nephrol Dial Transplant 2021; 36:247-256. [PMID: 33155059 DOI: 10.1093/ndt/gfaa211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many patients with idiopathic focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation (TX). Although several circulating permeability factors (CPFs) responsible for recurrence have been suggested, there is no consensus. To facilitate CPF identification and predict recurrence after TX, there is a need for robust methods that demonstrate the presence of CPFs. METHODS Cultured human podocytes (hPods) and human and mouse glomerular endothelial cells (ciGEnC, mGEnC) were exposed to plasmas of FSGS patients with presumed CPFs, and of (disease) controls. A visual scoring assay and flow cytometry analysis of side scatter were used to measured changes in cellular granularity after exposure to plasma. RESULTS Nine out of 13 active disease plasmas of 10 FSGS patients with presumed CPFs induced granularity in hPod in a dose- and time-dependent manner. Corresponding remission plasmas induced no or less granularity in hPod. Similar results were obtained with ciGEnC and mGEnC, although induced granularity was less compared with hPod. Notably, foetal calf serum, healthy plasma and a remission plasma partially blocked FSGS plasma-induced hPod granularity. CONCLUSIONS We developed a novel assay in which active disease, presumably CPF-containing, FSGS plasmas induced granularity in cultured hPod. Our results may indicate the presence of CPF inhibitor(s) in healthy and remission plasma. We suggest the presence of a delicate balance between CPF and a CPF inhibitory factor, which is disturbed in patients with active disease. Our novel assays can be applied in future research to identify CPF and CPF inhibitors, and possibly to predict recurrence after TX.
Collapse
Affiliation(s)
- Dirk J W den Braanker
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rutger J Maas
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen K Deegens
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cansu Yanginlar
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Immune-mediated entities of (primary) focal segmental glomerulosclerosis. Cell Tissue Res 2021; 385:423-434. [PMID: 33907872 PMCID: PMC8523460 DOI: 10.1007/s00441-021-03454-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) represents a glomerular scar formation downstream of various different mechanisms leading to podocytopathy and podocyte loss. Recently, significant advances were made in understanding genetic factors, podocyte intrinsic mechanisms, and adaptive mechanisms causing FSGS. However, while most cases of nephrotic FSGS are being treated with immunosuppressants, the underlying immune dysregulation, involved immune cells, and soluble factors are only incompletely understood. Thus, we here summarize the current knowledge of proposed immune effector cells, secreted soluble factors, and podocyte response in immune-mediated (primary) FSGS.
Collapse
|
11
|
[Therapeutics for acute tubular necrosis in 2020]. Nephrol Ther 2021; 17:92-100. [PMID: 33483244 DOI: 10.1016/j.nephro.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
Acute kidney injury is a major cause of in-hospital morbidity and mortality because of the serious nature of the underlying illnesses and the high incidence of complications. The two major causes of acute kidney injury that occur in the hospital are prerenal disease and acute tubular necrosis. Acute tubular necrosis has a histological definition, even if a kidney biopsy is rarely performed. Kidney injuries occurring during acute tubular necrosis are underlined by different pathophysiological mechanisms that emphasize the role of hypoxia on the tubular cells such as apoptosis, cytoskeleton disruption, mitochondrial function and the inflammation mediated by innate immune cells. The microcirculation and the endothelial cells are also the targets of hypoxia-mediated impairment. Repair mechanisms are sometimes inadequate because of pro-fibrotic factors that will lead to chronic kidney disease. Despite all the potential therapeutic targets highlighted by the pathophysiological knowledge, further works remain necessary to find a way to prevent these injuries.
Collapse
|
12
|
Podestà MA, Ponticelli C. Autoimmunity in Focal Segmental Glomerulosclerosis: A Long-Standing Yet Elusive Association. Front Med (Lausanne) 2020; 7:604961. [PMID: 33330569 PMCID: PMC7715033 DOI: 10.3389/fmed.2020.604961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological term that describes a pathologic renal entity affecting both adults and children, with a wide array of possible underlying etiologies. Podocyte damage with scarring, the hallmark of this condition, leads to altered permeability of the glomerular barrier, which may result in massive proteinuria and relentless renal function deterioration. A definite cause of focal segmental glomerulosclerosis can be confirmed in a minority of cases, while most forms have been traditionally labeled as primary or idiopathic. Despite this definition, increasing evidence indicates that primary forms are a heterogenous group rather than a single disease entity: several circulating factors that may affect glomerular permeability have been proposed as potential culprits, and both humoral and cellular immunity have been implicated in the pathogenesis of the disease. Consistently, immunosuppressive drugs are considered as the cornerstone of treatment for primary focal segmental glomerulosclerosis, but response to these agents and long-term outcomes are highly variable. In this review we provide a summary of historical and recent advances on the pathogenesis of primary focal segmental glomerulosclerosis, focusing on implications for its differential diagnosis and treatment.
Collapse
|
13
|
Shoji J, Mii A, Terasaki M, Shimizu A. Update on Recurrent Focal Segmental Glomerulosclerosis in Kidney Transplantation. Nephron Clin Pract 2020; 144 Suppl 1:65-70. [PMID: 33260184 DOI: 10.1159/000510748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a clinicopathological syndrome characterized by nephrotic-range proteinuria with high incidence of progression to end-stage renal disease (ESRD). In primary FSGS, 40-60% of patients develop ESRD within 10-20 years. SUMMARY Recurrence of FSGS after kidney transplantation is frequent and is associated with poor allograft survival. The risk factors for recurrent FSGS include onset of FSGS during childhood, rapid progression of primary FSGS to ESRD, history of recurrent FSGS in previous allograft, and diffuse mesangial hypercellularity or collapsing variant of FSGS in the native kidney. The early histological findings of recurrent FSGS consist of unremarkable glomerular changes on light microscopy but significant podocyte effacement on electron microscopy; the loss of foot processes with eventual dropout of podocytes leads to the development of segmental lesions in the glomerulus. Experimental and clinical data suggest the existence of circulating permeability factors, such as soluble urokinase-type plasminogen activator receptor (suPAR), cardiotrophin-like cytokine factor-1 (CLCF-1), CD40 axis, and apolipoprotein A-Ib (ApoA-Ib), in the pathogenesis of recurrent FSGS. These biomarkers including circulating permeability factors may facilitate earlier diagnosis of FSGS posttransplant and may guide in the development of novel therapies that may be more effective and improve long-term outcomes in kidney transplantation. Key Messages: Several studies have suggested the possible circulating permeability factors, such as suPAR, CLCF-1, CD40 axis, and ApoA-Ib, in the pathogenesis and disease progression of FSGS and recurrent FSGS. Further studies should be performed to elucidate the true essential biomarker(s) associated with the onset and progression of FSGS as well as recurrent FSGS.
Collapse
Affiliation(s)
- Jun Shoji
- Division of Transplant Nephrology, University of California San Francisco, San Francisco, California, USA
| | - Akiko Mii
- Department of Nephrology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan,
| |
Collapse
|
14
|
Jacobs-Cachá C, Vergara A, García-Carro C, Agraz I, Toapanta-Gaibor N, Ariceta G, Moreso F, Serón D, López-Hellín J, Soler MJ. Challenges in primary focal segmental glomerulosclerosis diagnosis: from the diagnostic algorithm to novel biomarkers. Clin Kidney J 2020; 14:482-491. [PMID: 33623672 PMCID: PMC7886539 DOI: 10.1093/ckj/sfaa110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Primary or idiopathic focal segmental glomerulosclerosis (FSGS) is a kidney entity that involves the podocytes, leading to heavy proteinuria and in many cases progresses to end-stage renal disease. Idiopathic FSGS has a bad prognosis, as it involves young individuals who, in a considerably high proportion (∼15%), are resistant to corticosteroids and other immunosuppressive treatments as well. Moreover, the disease recurs in 30–50% of patients after kidney transplantation, leading to graft function impairment. It is suspected that this relapsing disease is caused by a circulating factor(s) that would permeabilize the glomerular filtration barrier. However, the exact pathologic mechanism is an unsettled issue. Besides its poor outcome, a major concern of primary FSGS is the complexity to confirm the diagnosis, as it can be confused with other variants or secondary forms of FSGS and also with other glomerular diseases, such as minimal change disease. New efforts to optimize the diagnostic approach are arising to improve knowledge in well-defined primary FSGS cohorts of patients. Follow-up of properly classified primary FSGS patients will allow risk stratification for predicting the response to different treatments. In this review we will focus on the diagnostic algorithm used in idiopathic FSGS both in native kidneys and in disease recurrence after kidney transplantation. We will emphasize those potential confusing factors as well as their detection and prevention. In addition, we will also provide an overview of ongoing studies that recruit large cohorts of glomerulopathy patients (Nephrotic Syndrome Study Network and Cure Glomerulonephropathy, among others) and the experimental studies performed to find novel reliable biomarkers to detect primary FSGS.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Ander Vergara
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Irene Agraz
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Nestor Toapanta-Gaibor
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Gema Ariceta
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Paediatric Nephrology, Hospital Universitari Vall d'Hebron. Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Daniel Serón
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Joan López-Hellín
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Biochemistry, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Biochemistry Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| |
Collapse
|
15
|
The Plasma Soluble Urokinase Plasminogen Activator Receptor Is Related to Disease Activity of Patients with ANCA-Associated Vasculitis. Mediators Inflamm 2020; 2020:7850179. [PMID: 32322165 PMCID: PMC7166284 DOI: 10.1155/2020/7850179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Objective The soluble urokinase plasminogen activator receptor (suPAR) is associated with kidney diseases and is used as a prognostic factor of renal function progression. The aim of this study was to explore whether circulating suPAR was associated with antineutrophil cytoplasmic autoantibody- (ANCA-) associated vasculitis (AAV) disease activity. Methods We evaluated 90 AAV patients with follow-up data and 35 normal controls; their plasma suPAR and C-reactive protein (CRP) levels were measured by ELISA. Associations between these levels, clinical parameters, and prognosis were analyzed. Results Plasma suPAR levels in AAV patients were significantly higher than in healthy controls (5,920.08 ± 3,447.17 vs. 1,441.97 ± 835.04 pg/mL, P < 0.001). Furthermore, suPAR was significantly elevated in AAV patients in active stage compared to those in partial remissions (6,492.19 ± 3,689.48 vs. 5,031.86 ± 2,489.01 pg/mL, P = 0.039). Correlation analyses demonstrated that suPAR levels positively correlated with initial serum creatinine, BVAS, CRP, and procalcitonin concentration, and negatively correlated with eGFR and C3 circulating levels. In a Kaplan-Meier survival analysis, patients with plasma suPAR levels >5683.3 pg/mL showed poorer survival than patients with lower levels (log-rank, P = 0.001). Besides, multivariate analyses confirmed that plasma suPAR levels were an independent adverse prognostic factor for a composite outcome of end-stage renal disease (ESRD) or death, after adjusting for age and gender (HR 1.05, 95% CI = 1.01 − 1.11, P = 0.043). Receiver operating characteristic curves showed a suPAR cutoff value >6662.2 pg/mL for composite outcome with 68% sensitivity and 88% specificity, with an AUC = 0.82, (95% CI = 0.68 − 0.96, P < 0.001). Conclusion Circulating suPAR levels might be a marker of activity correlated with disease activity in AAV patients, and, to some extent, could be a factor of poor prognosis.
Collapse
|
16
|
Harel E, Shoji J, Abraham V, Miller L, Laszik ZG, King A, Dobi D, Szabo G, Hann B, Sarwal MM, Craik CS, Vincenti F. Further Evidence That the Soluble Urokinase Plasminogen Activator Receptor Does Not Directly Injure Mice or Human Podocytes. Transplantation 2020; 104:54-60. [PMID: 31449183 PMCID: PMC6933079 DOI: 10.1097/tp.0000000000002930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of the soluble urokinase plasminogen activator receptor (suPAR) in focal segmental glomerulosclerosis (FSGS) as the circulating factor or as a predictor of recurrence after transplantation remains controversial. Previously published studies in mice and isolated podocytes produced conflicting results on the effect of suPAR on podocyte injury, effacement of foot processes, and proteinuria. These discordant results were in part due to diverse experimental designs and different strains of mice. The aim of our study was to determine the reasons for the inconsistencies of the previous studies results with suPAR by using uniform methods and studies in different strains of mice. METHODS We utilized a primary culture of human podocytes and 2 mouse models, the wild type (WT) and the urokinase plasminogen activator receptor (uPAR) KO (uPAR), in an attempt to resolve the reported conflicting results. RESULTS In both WT and uPAR mouse models, injection of recombinant uPAR, even at a high dose (100 μg), did not induce proteinuria, effacement of podocytes, or disruption of the cytoskeleton. Injection of suPAR resulted in its deposition exclusively in the glomerular endothelial cells and not in the podocytes of WT mice and was not detected at the uPAR KO mice. Kidneys from patients with recurrent FSGS had negative immunostaining for uPAR. We also evaluated the effect of recombinant uPAR on primary culture of human podocytes. uPAR did not result in podocytes damage. CONCLUSIONS suPAR by itself is not the cause for direct podocyte injury, in vitro or in vivo. These findings suggest a more complex and still poorly understood role of suPAR in FSGS.
Collapse
Affiliation(s)
- Efrat Harel
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Jun Shoji
- University of California, San Francisco, Kidney Transplant Service, CA 94143-0780, United States
| | - Vivek Abraham
- AbbVie, Renal Discovery, 1 North Waukegan Road North Chicago, IL 60064
| | - Loan Miller
- AbbVie, Renal Discovery, 1 North Waukegan Road North Chicago, IL 60064
| | - Zoltan G. Laszik
- University of California, San Francisco, Kidney Transplant Service, CA 94143-0780, United States
| | - Andrew King
- AbbVie, Renal Discovery, 1 North Waukegan Road North Chicago, IL 60064
| | - Dejan Dobi
- University of California, San Francisco, Kidney Transplant Service, CA 94143-0780, United States
| | - Gyula Szabo
- University of California, San Francisco, Kidney Transplant Service, CA 94143-0780, United States
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Minnie M. Sarwal
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Flavio Vincenti
- University of California, San Francisco, Kidney Transplant Service, CA 94143-0780, United States
| |
Collapse
|
17
|
Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatr Nephrol 2020; 35:1363-1372. [PMID: 30820702 PMCID: PMC7316697 DOI: 10.1007/s00467-019-4203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.
Collapse
|
18
|
Candelier JJ, Lorenzo HK. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle. Cell Tissue Res 2019; 379:231-243. [PMID: 31848752 DOI: 10.1007/s00441-019-03147-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Nephrotic syndrome is traditionally defined using the triad of edema, hypoalbuminemia, and proteinuria, but this syndrome is very heterogeneous and difficult to clarify. Its idiopathic form (INS) is probably the most harmful and essentially comprises two entities: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). We will consider some hypotheses regarding the mechanisms underlying INS: (i) the presence of several glomerular permeability factors in the sera of patients that alter the morphology and function of podocytes leading to proteinuria, (ii) the putative role of immune cells. Thanks to recent data, our understanding of these disorders is evolving towards a more multifactorial origin. In this context, circulating factors may be associated according to sequential kinetic mechanisms or micro-environmental changes that need to be determined. In addition, the resulting proteinuria may trigger more proteinuria enhancing the glomerular destabilization.
Collapse
Affiliation(s)
- Jean-Jacques Candelier
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France.,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France
| | - Hans-Kristian Lorenzo
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France. .,Service de Néphrologie, Hôpital Bicêtre, Faculté de Médecine Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.
| |
Collapse
|
19
|
Cassis P, Zoja C, Perico L, Remuzzi G. A preclinical overview of emerging therapeutic targets for glomerular diseases. Expert Opin Ther Targets 2019; 23:593-606. [PMID: 31150308 DOI: 10.1080/14728222.2019.1626827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Animal models have provided significant insights into the mechanisms responsible for the development of glomerular lesions and proteinuria; they have also helped to identify molecules that control the podocyte function as suitable target-specific therapeutics. Areas covered: We discuss putative therapeutic targets for proteinuric glomerular diseases. An exhaustive search for eligible studies was performed in PubMed/MEDLINE. Most of the selected reports were published in the last decade, but we did not exclude older relevant milestone publications. We consider the molecules that regulate podocyte cytoskeletal dynamics and the transcription factors that regulate the expression of slit-diaphragm proteins. There is a focus on SGLT2 and sirtuins which have recently emerged as mediators of podocyte injury and repair. We also examine paracrine signallings involved in the cross-talk of injured podocytes with the neighbouring glomerular endothelial cells and parietal epithelial cells. Expert opinion: There is a need to discover novel therapeutic moleecules with renoprotective effects for those patients with glomerular diseases who do not respond completely to standard therapy. Emerging strategies targeting components of the podocyte cytoskeleton or signallings that regulate cellular communication within the glomerulus are promising avenues for treating glomerular diseases.
Collapse
Affiliation(s)
- Paola Cassis
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Carlamaria Zoja
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Luca Perico
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Giuseppe Remuzzi
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy.,b 'L. Sacco' Department of Biomedical and Clinical Sciences , University of Milan , Milan , Italy
| |
Collapse
|
20
|
Balancing the genetic risk of APOL1 kidney disease variants. Nephrol Ther 2019; 15 Suppl 1:S79-S84. [PMID: 30981400 DOI: 10.1016/j.nephro.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
Abstract
African-Americans exhibit an excess risk for chronic and end-stage kidney disease compared to the non-African populations. Two APOL1 genetic variants were shown to account for the majority of this racial disparity in glomerulopathies and other non-diabetic kidney disease. The high-risk genotype has only been reported in populations with recent African ancestry (14 % in African-Americans and up to more than 30 % in West Africa). In less than 10 years, the community has accumulated extensive knowledge on APOL1 and its genetic variants, from their positive selection for resistance against African trypanosomes to potential molecular mechanisms of podocyte injury. Finally, APOL1 associations with kidney transplantation outcomes and with postdonation end-stage kidney disease in living donors have paved the way for a personalized medicine implementation of APOL1 genotyping.
Collapse
|
21
|
Han R, Hu S, Qin W, Shi J, Hou Q, Wang X, Xu X, Zhang M, Zeng C, Liu Z, Bao H. C3a and suPAR drive versican V1 expression in tubular cells of focal segmental glomerulosclerosis. JCI Insight 2019; 4:122912. [PMID: 30944246 DOI: 10.1172/jci.insight.122912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic tubulointerstitial injury impacts the prognosis of focal segmental glomerulosclerosis (FSGS). We found that the level of versican V1 was increased in tubular cells of FSGS patients. Tubular cell-derived versican V1 induced proliferation and collagen synthesis by activating the CD44/Smad3 pathway in fibroblasts. Both urine C3a and suPAR were increased and bound to the tubular cells in FSGS patients. C3a promoted the transcription of versican by activating the AKT/β-catenin pathway. C3aR knockout decreased the expression of versican in Adriamycin-treated (ADR-treated) mice. On the other hand, suPAR bound to integrin β6 and activated Rac1, which bound to SRp40 at the 5' end of exon 7 in versican pre-mRNA. This binding inhibited the 3'-end splicing of intron 6 and the base-pair interactions between intron 6 and intron 8, leading to the formation of versican V1. Cotreatment with ADR and suPAR specifically increased the level of versican V1 in tubulointerstitial tissues and caused more obvious interstitial fibrosis in mice than treatment with only ADR. Altogether, our results show that C3a and suPAR drive versican V1 expression in tubular cells by promoting transcription and splicing, respectively, and the increases in tubular cell-derived versican V1 induce interstitial fibrosis by activating fibroblasts in FSGS.
Collapse
Affiliation(s)
- Runhong Han
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Shuai Hu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qin Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xia Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Minchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hao Bao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
22
|
Wei C, Li J, Adair BD, Zhu K, Cai J, Merchant M, Samelko B, Liao Z, Koh KH, Tardi NJ, Dande RR, Liu S, Ma J, Dibartolo S, Hägele S, Peev V, Hayek SS, Cimbaluk DJ, Tracy M, Klein J, Sever S, Shattil SJ, Arnaout MA, Reiser J. uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. J Clin Invest 2019; 129:1946-1959. [PMID: 30730305 DOI: 10.1172/jci124793] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived circulating signaling molecule that has been implicated in chronic kidney disease, such as focal segmental glomerulosclerosis (FSGS). Typically, native uPAR (isoform 1) translates to a 3-domain protein capable of binding and activating integrins, yet the function of additional isoforms generated by alternative splicing is unknown. Here, we characterized mouse uPAR isoform 2 (msuPAR2), encoding domain I and nearly one-half of domain II, as a dimer in solution, as revealed by 3D electron microscopy structural analysis. In vivo, msuPAR2 transgenic mice exhibited signs of severe renal disease characteristic of FSGS with proteinuria, loss of kidney function, and glomerulosclerosis. Sequencing of the glomerular RNAs from msuPAR2-Tg mice revealed a differentially expressed gene signature that includes upregulation of the suPAR receptor Itgb3, encoding β3 integrin. Crossing msuPAR2-transgenic mice with 3 different integrin β3 deficiency models rescued msuPAR2-mediated kidney function. Further analyses indicated a central role for β3 integrin and c-Src in msuPAR2 signaling and in human FSGS kidney biopsies. Administration of Src inhibitors reduced proteinuria in msuPAR2-transgenic mice. In conclusion, msuPAR2 may play an important role in certain forms of scarring kidney disease.
Collapse
Affiliation(s)
- Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jing Li
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian D Adair
- Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jian Cai
- University of Louisville, Louisville, Kentucky, USA
| | | | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Zhongji Liao
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Kwi Hye Koh
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicholas J Tardi
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ranadheer R Dande
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shuangxin Liu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jianchao Ma
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Salvatore Dibartolo
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan Hägele
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Vasil Peev
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Salim S Hayek
- University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - David J Cimbaluk
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Melissa Tracy
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jon Klein
- University of Louisville, Louisville, Kentucky, USA
| | - Sanja Sever
- Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | - M Amin Arnaout
- Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
23
|
Kopp JB, Heymann J. c-Src is in the effector pathway linking uPAR and podocyte injury. J Clin Invest 2019; 129:1827-1829. [PMID: 30939121 DOI: 10.1172/jci127927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of urokinase-type plasminogen activator receptor (uPAR) in kidney physiology and pathology has attracted considerable attention. The protein uPAR has dual functions: as a key regulator of plasmin generation and a component of the innate immune system. In the current issue, Wei and colleagues describe a transgenic mouse expressing Plaur RNA in glomerular podocytes. The mice manifested podocyte injury, including c-Src phosphorylation, proteinuria, and focal segmental glomerulosclerosis (FSGS). Plaur-transgenic mice on a β3 integrin-deficient background were protected from podocyte injury. Renal biopsies from subjects with FSGS, but not those with other glomerular diseases, manifested increased c-Src phosphorylation in podocytes. These findings suggest a novel injury mechanism in FSGS, with possible implications for new treatment strategies.
Collapse
|
24
|
MeSsAGe risk score: tool for renal biopsy decision in steroid-dependent nephrotic syndrome. Pediatr Res 2019; 85:477-483. [PMID: 30659270 DOI: 10.1038/s41390-019-0277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND A lack of consensus exists as to the timing of kidney biopsy in children with steroid-dependent nephrotic syndrome (SDNS) where minimal change disease (MCD) predominates. This study aimed at examining the applicability of a biomarker-assisted risk score model to select SDNS patients at high risk of focal segmental glomerulosclerosis (FSGS) for biopsy. METHODS Fifty-five patients with SDNS and biopsy-proven MCD (n = 40) or FSGS (n = 15) were studied. A risk score model was developed with variables consisting of age, sex, eGFR, suPAR levels and percentage of CD8+ memory T cells. Following multivariate regression analysis, total risk score was calculated as sum of the products of odds ratios and corresponding variables. Predictive cut-off point was determined using receiver operator characteristics (ROC) curve analysis. RESULTS Plasma suPAR levels in FSGS patients were significantly higher, while percentage of CD45RO+CD8+CD3+ was significantly lower than in MCD patients and controls. ROC analysis suggests the risk score model with threshold score of 16.7 (AUC 0.84, 95% CI 0.72-0.96) was a good predictor of FSGS on biopsy. The 100% PPV cut-off was >24.0, while the 100% NPV was <13.3. CONCLUSION A suPAR and CD8+ memory T cell percentage-based risk score model was developed to stratify SDNS patients for biopsy and for predicting FSGS.
Collapse
|
25
|
Harel E, Shoji J, Abraham V, Miller L, Laszik Z, Thurison T, King A, Olshen A, Leung J, Szabo G, Hann B, Høyer‐Hansen G, Craik CS, Vincenti F. Identifying a potential biomarker for primary focal segmental glomerulosclerosis and its association with recurrence after transplantation. Clin Transplant 2019; 33:e13487. [DOI: 10.1111/ctr.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/23/2018] [Accepted: 01/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Efrat Harel
- Department of Pharmaceutical Chemistry University of California San Francisco California
| | - Jun Shoji
- Kidney Transplant Service University of California San Francisco California
| | | | | | - Zoltan Laszik
- Department of Pathology University of California San Francisco California
| | - Tine Thurison
- The Finsen LaboratoryCopenhagen University Hospital/Biotech Research & Innovation CentreCopenhagenDenmark
| | | | - Adam Olshen
- Helen Diller Family Comprehensive Cancer CenterUniversity of CaliforniaSan Francisco California
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan Francisco California
| | - Joey Leung
- Kidney Transplant Service University of California San Francisco California
| | - Gyula Szabo
- Department of Pathology University of California San Francisco California
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer CenterUniversity of CaliforniaSan Francisco California
| | | | - Charles S. Craik
- Department of Pharmaceutical Chemistry University of California San Francisco California
| | - Flavio Vincenti
- Kidney Transplant Service University of California San Francisco California
| |
Collapse
|
26
|
Stone H, Magella B, Bennett MR. The Search for Biomarkers to Aid in Diagnosis, Differentiation, and Prognosis of Childhood Idiopathic Nephrotic Syndrome. Front Pediatr 2019; 7:404. [PMID: 31681707 PMCID: PMC6805718 DOI: 10.3389/fped.2019.00404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of genes associated with childhood-onset nephrotic syndrome has significantly advanced our understanding of the pathogenesis of this complex disease over the past two decades, however the precise etiology in many cases remains unclear. At this time, we still rely on invasive kidney biopsy to determine the underlying cause of nephrotic syndrome in adults. In children, response to steroid therapy has been shown to be the best indicator of prognosis, and therefore all children are treated initially with corticosteroids. Because this strategy exposes a large number of children to the toxicities of steroids without providing any benefit, many researchers have sought to find a marker that could predict a patient's response to steroids at the time of diagnosis. Additionally, the identification of such a marker could provide prognostic information about a patient's response to medications, progression to end stage renal disease, and risk of disease recurrence following transplantation. Major advances have been made in understanding how genetic biomarkers can be used to predict a patient's response to therapies and disease course, especially after transplantation. Research attempting to identify urine- and serum-based biomarkers which could be used for the diagnosis, differentiation, and prognosis of nephrotic syndrome has become an area of emphasis. In this review, we explore the most exciting biomarkers and their potential clinical applications.
Collapse
Affiliation(s)
- Hillarey Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bliss Magella
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael R Bennett
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
27
|
Dumas De La Roque C, Combe C, Rigothier C. [Up to date of pathophysiology mechanism of idiopathic nephrotic syndromes: Minimal change disease and focal and segmental glomerulosclerosis]. Nephrol Ther 2018; 14:501-506. [PMID: 30150079 DOI: 10.1016/j.nephro.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/03/2018] [Indexed: 01/27/2023]
Abstract
Idiopathic nephrotic syndrome represents up to 30% of adult glomerulopathies. However, its prognosis according to remission, relapse and renal failure remains unchanged since the 80s and prediction remains difficult. Physiopathology of adult idiopathic nephrotic syndrome is complex and multifactorial, including immunologic and environmental factors and a putative permeability-circulating factor, still unknown. In this point of view, we propose to summarize actual knowledge about idiopathic minimal change disease and focal and segmental glomerulosclerosis physiopathology.
Collapse
Affiliation(s)
- Charlotte Dumas De La Roque
- Service de néphrologie transplantation et dialyse, centre hospitalier universitaire de Bordeaux, 33076 Bordeaux, France.
| | - Christian Combe
- Service de néphrologie transplantation et dialyse, centre hospitalier universitaire de Bordeaux, 33076 Bordeaux, France; Inserm U1026, université de Bordeaux, 33076 Bordeaux, France
| | - Claire Rigothier
- Service de néphrologie transplantation et dialyse, centre hospitalier universitaire de Bordeaux, 33076 Bordeaux, France; Inserm U1026, université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
28
|
Saleem M. What is the Role of Soluble Urokinase-Type Plasminogen Activator in Renal Disease? Nephron Clin Pract 2018; 139:334-341. [DOI: 10.1159/000490118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
|
29
|
Doublier S, Zennaro C, Musante L, Spatola T, Candiano G, Bruschi M, Besso L, Cedrino M, Carraro M, Ghiggeri GM, Camussi G, Lupia E. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS One 2017; 12:e0188045. [PMID: 29155846 PMCID: PMC5695800 DOI: 10.1371/journal.pone.0188045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.
Collapse
Affiliation(s)
- Sophie Doublier
- Department of Oncology, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Luca Musante
- Nephrology, Dialysis, Transplantation and Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genoa, Italy
| | - Tiziana Spatola
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis, Transplantation and Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genoa, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis, Transplantation and Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genoa, Italy
| | - Luca Besso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michele Carraro
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis, Transplantation and Laboratory on Pathophysiology of Uremia, G. Gaslini Children Hospital, Genoa, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
- * E-mail: (EL); (GC)
| | - Enrico Lupia
- Department of Medical Sciences, University of Turin, Turin, Italy
- * E-mail: (EL); (GC)
| |
Collapse
|
30
|
Multiple Targets for Novel Therapy of FSGS Associated with Circulating Permeability Factor. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6232616. [PMID: 28951873 PMCID: PMC5603123 DOI: 10.1155/2017/6232616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 06/15/2017] [Indexed: 01/13/2023]
Abstract
A plasma component is responsible for altered glomerular permeability in patients with focal segmental glomerulosclerosis. Evidence includes recurrence after renal transplantation, remission after plasmapheresis, proteinuria in infants of affected mothers, transfer of proteinuria to experimental animals, and impaired glomerular permeability after exposure to patient plasma. Therapy may include decreasing synthesis of the injurious agent, removing or blocking its interaction with cells, or blocking signaling or enhancing cell defenses to restore the permeability barrier and prevent progression. Agents that may prevent the synthesis of the permeability factor include cytotoxic agents or aggressive chemotherapy. Extracorporeal therapies include plasmapheresis, immunoadsorption with protein A or anti-immunoglobulin, or lipopheresis. Oral or intravenous galactose also decreases Palb activity. Studies of glomeruli have shown that several strategies prevent the action of FSGS sera. These include blocking receptor-ligand interactions, modulating cell reactions using indomethacin or eicosanoids 20-HETE or 8,9-EET, and enhancing cytoskeleton and protein interactions using calcineurin inhibitors, glucocorticoids, or rituximab. We have identified cardiotrophin-like cytokine factor 1 (CLCF-1) as a candidate for the permeability factor. Therapies specific to CLCF-1 include potential use of cytokine receptor-like factor (CRLF-1) and inhibition of Janus kinase 2. Combined therapy using multiple modalities offers therapy to reverse proteinuria and prevent scarring.
Collapse
|
31
|
|
32
|
suPAR and chronic kidney disease-a podocyte story. Pflugers Arch 2017; 469:1017-1020. [PMID: 28689240 DOI: 10.1007/s00424-017-2026-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
The soluble urokinase-type plasminogen activator receptor (suPAR) is a circulating signaling molecule derived from immature myeloid cells. Elevated levels of suPAR have been linked to the pathogenesis of the kidney disease focal and segmental glomerulosclerosis. Here, suPAR acts on podocytes by activating αvβ3 integrins. Large observational studies showed that suPAR also predicts chronic kidney disease incidence and progression by predating the disease by several years prior to any other known marker of renal dysfunction. suPAR is rapidly developing into a prime target for pharmacotherapy as its neutralization is forecasted to be feasible and safe.
Collapse
|
33
|
Personalized Medicine: New Perspectives for the Diagnosis and the Treatment of Renal Diseases. Int J Mol Sci 2017; 18:ijms18061248. [PMID: 28604601 PMCID: PMC5486071 DOI: 10.3390/ijms18061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 05/27/2017] [Indexed: 12/29/2022] Open
Abstract
The prevalence of renal diseases is rising and reaching 5-15% of the adult population. Renal damage is associated with disturbances of body homeostasis and the loss of equilibrium between exogenous and endogenous elements including drugs and metabolites. Studies indicate that renal diseases are influenced not only by environmental but also by genetic factors. In some cases the disease is caused by mutation in a single gene and at that time severity depends on the presence of one or two mutated alleles. In other cases, renal disease is associated with the presence of alteration within a gene or genes, but environmental factors are also necessary for the development of disease. Therefore, it seems that the analysis of genetic aspects should be a natural component of clinical and experimental studies. The goal of personalized medicine is to determine the right drug, for the right patient, at the right time. Whole-genome examinations may help to change the approach to the disease and the patient resulting in the creation of "personalized medicine" with new diagnostic and treatment strategies designed on the basis of genetic background of each individual. The identification of high-risk patients in pharmacogenomics analyses will help to avoid many unwarranted side effects while optimizing treatment efficacy for individual patients. Personalized therapies for kidney diseases are still at the preliminary stage mainly due to high costs of such analyses and the complex nature of human genome. This review will focus on several areas of interest: renal disease pathogenesis, diagnosis, treatment, rate of progression and the prediction of prognosis.
Collapse
|
34
|
Hahm E, Peev V, Reiser J. Extrarenal determinants of kidney filter function. Cell Tissue Res 2017; 369:211-216. [PMID: 28560690 DOI: 10.1007/s00441-017-2635-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022]
Abstract
The kidney is an organ involved in cross talk with many human organs. The link between the immune system and the kidney has been studied in some detail, although data precisely elucidating their interaction are sparse, in particular with regard to the function of the kidney filter apparatus. Current research suggests that an understanding of the impairment of this cross talk between the bone marrow, as a fundament of the immune system and the kidney will provide meaningful insights into the pathophysiological mechanisms of impaired kidney filter function. Circulating factors have long been implicated in the pathogenesis of idiopathic nephrotic syndrome, particularly focal segmental glomerulosclerosis (FSGS) and its recurrence. Soluble urokinase receptor (suPAR) has emerged as a circulating factor responsible for FSGS and also as an early predictive marker for the development of various renal diseases. The bone marrow has recently been revealed as a predominant source of suPAR with deleterious effects on the kidney filter. These new findings have led to bone marrow or hematopoietic stem cell transplants being considered as potential therapeutic options for preventing the post-transplantation recurrence of FSGS or even as a treatment for the original disease associated with high suPAR levels. Whereas bone marrow transplantation for patients with pre-existing chronic kidney disease is challenging, recent clinical trials have demonstrated the promising outcome of combined bone marrow and kidney transplantation in patients with kidney failure. In this review, with its brief update on suPAR, we describe the critical new role of the bone marrow in the pathogenesis of the kidney disease process and the functional connection between these two organs through the soluble mediator, suPAR. We also comment on the feasibility of bone marrow transplants for the treatment of patients with chronic renal failure arising from recurrent FSGS.
Collapse
Affiliation(s)
- Eunsil Hahm
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA
| | - Vasil Peev
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA. .,Rush University Transplant Program, 1725 W. Harrison Street, Suite 161, Chicago, IL, 60612, USA.
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA
| |
Collapse
|
35
|
Recent Treatment Advances and New Trials in Adult Nephrotic Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7689254. [PMID: 28553650 PMCID: PMC5434278 DOI: 10.1155/2017/7689254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
The etiology of nephrotic syndrome is complex and ranges from primary glomerulonephritis to secondary forms. Patients with nephrotic syndrome often need immunosuppressive treatment with its side effects and may progress to end stage renal disease. This review focuses on recent advances in the treatment of primary causes of nephrotic syndrome (idiopathic membranous nephropathy (iMN), minimal change disease (MCD), and focal segmental glomerulosclerosis (FSGS)) since the publication of the KDIGO guidelines in 2012. Current treatment recommendations are mostly based on randomized controlled trials (RCTs) in children, small RCTs, or case series in adults. Recently, only a few new RCTs have been published, such as the Gemritux trial evaluating rituximab treatment versus supportive antiproteinuric and antihypertensive therapy in iMN. Many RCTs are ongoing for iMN, MCD, and FSGS that will provide further information on the effectiveness of different treatment options for the causative disease. In addition to reviewing recent clinical studies, we provide insight into potential new targets for the treatment of nephrotic syndrome from recent basic science publications.
Collapse
|
36
|
Abstract
Focal segmental glomerulosclerosis (FSGS) represents the most common primary glomerular disease responsible for the development of end-stage renal disease (ESRD) in the United States (US). The disease progresses from podocyte injury to chronic kidney disease (CKD), ultimately leading to total nephron degeneration. Extensive basic science research has been conducted to unwind the mechanisms of FSGS and, with those insights, understand major contributors of CKD in general. As a result, several putative molecules and pathways have been studied, all implicated in the disease; some serve, in addition, as early biomarkers. The ongoing research is currently focusing on understanding how these molecules and pathways can interplay and be utilized as potential diagnostic and therapeutic targets. Among these molecules, the soluble urokinase plasminogen activating receptor (suPAR) has been studied in detail, both clinically and from a basic science perspective. By now, it has emerged as the earliest and most robust marker of future CKD. Other circulating factors harming podocytes include anti-CD40 auto-antibody and possibly cardiotrophin-like cytokine factor-1. Understanding these factors will aid our efforts to ultimately cure FSGS and possibly treat a larger portion of CKD patients much more effectively.
Collapse
Affiliation(s)
- Vasil Peev
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Eunsil Hahm
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
37
|
Gallon L, Quaggin SE. Glomerular disease: A suPAR kidney connection found in the bone marrow. Nat Rev Nephrol 2017; 13:263-264. [PMID: 28287111 DOI: 10.1038/nrneph.2017.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lorenzo Gallon
- Northwestern University Feinberg School of Medicine, Division of Nephrology &Hypertension, 303 E. Superior St., Chicago, Illinois 60611, USA
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Division of Nephrology &Hypertension, 303 E. Superior St., Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Current status of pediatric renal transplant pathology. Pediatr Nephrol 2017; 32:425-437. [PMID: 27221522 DOI: 10.1007/s00467-016-3381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 10/21/2022]
Abstract
Histopathology is still an indispensable tool for the diagnosis of kidney transplant dysfunction in adult and pediatric patients. This review presents consolidated knowledge, recent developments and future prospects on the biopsy procedure, the diagnostic work-up, classification schemes, the histopathology of rejection, including antibody-mediated forms, ABO-incompatible transplants, protocol biopsies, recurrent and de novo disease, post-transplant lymphoproliferative disorder, infectious complications and drug-induced toxicity. It is acknowledged that frequently the correct diagnosis can only be reached in consensus with clinical, serological, immunogenetical, bacteriological and virological findings. This review shall enhance the understanding of the pediatric nephrologist for the thought processes of nephropathologists with the aim to facilitate teamwork between these specialist groups for the benefit of the patient.
Collapse
|
39
|
Zand L, Glassock RJ, De Vriese AS, Sethi S, Fervenza FC. What are we missing in the clinical trials of focal segmental glomerulosclerosis? Nephrol Dial Transplant 2017; 32:i14-i21. [DOI: 10.1093/ndt/gfw324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/28/2016] [Indexed: 01/11/2023] Open
|
40
|
Desmedt S, Desmedt V, Delanghe JR, Speeckaert R, Speeckaert MM. The intriguing role of soluble urokinase receptor in inflammatory diseases. Crit Rev Clin Lab Sci 2017; 54:117-133. [DOI: 10.1080/10408363.2016.1269310] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - J. R. Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | - R. Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | | |
Collapse
|
41
|
Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med 2016; 23:100-106. [PMID: 27941791 DOI: 10.1038/nm.4242] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Excess levels of protein in urine (proteinuria) is a hallmark of kidney disease that typically occurs in conjunction with diabetes, hypertension, gene mutations, toxins or infections but may also be of unknown cause (idiopathic). Systemic soluble urokinase plasminogen activator receptor (suPAR) is a circulating factor implicated in the onset and progression of chronic kidney disease (CKD), such as focal segmental glomerulosclerosis (FSGS). The cellular source(s) of elevated suPAR associated with future and progressing kidney disease is unclear, but is likely extra-renal, as the pathological uPAR is circulating and FSGS can recur even after a damaged kidney is replaced with a healthy donor organ. Here we report that bone marrow (BM) Gr-1lo immature myeloid cells are responsible for the elevated, pathological levels of suPAR, as evidenced by BM chimera and BM ablation and cell transfer studies. A marked increase of Gr-1lo myeloid cells was commonly found in the BM of proteinuric animals having high suPAR, and these cells efficiently transmit proteinuria when transferred to healthy mice. In accordance with the results seen in suPAR-associated proteinuric animal models, in which kidney damage is caused not by local podocyte-selective injury but more likely by systemic insults, a humanized xenograft model of FSGS resulted in an expansion of Gr-1lo cells in the BM, leading to high plasma suPAR and proteinuric kidney disease. Together, these results identify suPAR as a functional connection between the BM and the kidney, and they implicate BM immature myeloid cells as a key contributor to glomerular dysfunction.
Collapse
|
42
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
43
|
Soluble Urokinase Receptors in Focal Segmental Glomerulosclerosis: A Review on the Scientific Point of View. J Immunol Res 2016; 2016:2068691. [PMID: 27504461 PMCID: PMC4967695 DOI: 10.1155/2016/2068691] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/12/2016] [Indexed: 12/17/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is one of the primary glomerular disorders in both children and adults which can progress to end-stage renal failure. Although there are genetic and secondary causes, circulating factors have also been regarded as an important factor in the pathogenesis of FSGS, because about 40% of the patients with FSGS have recurrence after renal transplantation. Soluble urokinase-type plasminogen activator receptor (suPAR) is a soluble form of uPAR, which is a membrane-bound protein linked to GPI in various immunologically active cells, including podocytes. It has recently been suggested as a potential circulating factor in FSGS by in vitro podocyte experiments, in vivo mice models, and human studies. However, there have also been controversies on this issue, because subsequent studies showed conflicting results. suPAR levels were also increased in patients with other glomerular diseases and were inversely correlated with estimated glomerular filtration rate. Nevertheless, there has been no balanced review on this issue. In this review, we compare the conflicting data on the involvement of suPAR in the pathogenesis of FSGS and shed light on interpretation by taking into account many points and the potential variables and confounders influencing serum suPAR levels.
Collapse
|
44
|
Abstract
Focal segmental glomerulosclerosis, which is a common glomerular disorder, manifests clinically with a nephrotic syndrome and has a high propensity for recurrence after kidney transplantation. The pathophysiology is currently unknown, and podocytes appear to be the target of one or several circulating factor(s) that lead to the recurrence of proteinuria after kidney transplantation. Identifying these circulating factor(s) and cells involved in its synthesis remains elusive; however, recently, our research on podocyte cytoskeleton biology has opened a new era of treatment. This review will highlight recent progress in the physiopathology of focal segmental glomerulosclerosis recurrence after transplantation and its treatment.
Collapse
|
45
|
Abstract
Most glomerulonephritides, even the more common types, are rare diseases. They are nevertheless important since they frequently affect young people, often cannot be cured, and can lead to chronic kidney disease, including end-stage renal failure, with associated morbidity and cost. For example, in young adults, IgA nephropathy is the most common cause of end-stage renal disease. In this Seminar, we summarise existing knowledge of clinical signs, pathogenesis, prognosis, and treatment of glomerulonephritides, with a particular focus on data published between 2008 and 2015, and the most common European glomerulonephritis types, namely IgA nephropathy, membranous glomerulonephritis, minimal change disease, focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, and the rare complement-associated glomerulonephritides such as dense deposit disease and C3 glomerulonephritis.
Collapse
Affiliation(s)
- Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital, Rheinisch Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | - Kerstin Amann
- Department of Nephropathology, Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Gu QH, Cui Z, Huang J, Zhang YM, Qu Z, Wang F, Wang X, Wang SX, Liu G, Zhao MH. Patients With Combined Membranous Nephropathy and Focal Segmental Glomerulosclerosis Have Comparable Clinical and Autoantibody Profiles With Primary Membranous Nephropathy: A Retrospective Observational Study. Medicine (Baltimore) 2016; 95:e3786. [PMID: 27227951 PMCID: PMC4902375 DOI: 10.1097/md.0000000000003786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with combined membranous nephropathy (MN) and focal segmental glomerulosclerosis (FSGS) have been reported with different clinical significance. Investigations on the possible mechanisms of the combined glomerular lesions are necessary but scarce. Twenty patients with both MN and FSGS lesions were enrolled in the study. Sixty-five patients with primary MN and 56 patients with primary FSGS were used as disease controls. Clinical data on renal biopsy and during follow-up were collected. Circulating anti-phospholipase A2 receptor (PLA2R) antibody, glomerular PLA2R expression, IgG4 deposition, and soluble urokinase receptor (suPAR) levels were detected. We found that patients with combined lesions presented with older age, less proteinuria, higher albumin, and better renal function on biopsy. These were comparable to the patients with primary MN, but differed from the patients with primary FSGS. Patients with combined lesions showed higher stages of MN, no cellular variant on FSGS classification, and more common (100.0%) tubulointerstitial injury than both primary MN and primary FSGS patients. In the patients with combined lesions, 80.0% had circulating anti-PLA2R antibody and 68.4% had IgG4 predominant deposition in glomeruli, which were comparable to primary MN. The patients with combined lesions had significantly lower urinary suPAR concentrations, than the primary FSGS patients (315.6 ± 151.0 vs 752.1 ± 633.9 pg/μmol; P = 0.002), but similar to the primary MN patients (267.9 ± 147.5 pg/μmol). We conclude that patients with combined MN and FSGS may share the same underlying pathogenesis with primary MN. The FSGS lesion might be secondary to primary MN.
Collapse
Affiliation(s)
- Qiu-Hua Gu
- From the Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China (Q-hG, ZC, JH, Y-MZ, ZQ, FW, XW, GL, M-hZ); Electron Microscopy Laboratory, Peking University First Hospital (S-xW); and Peking-Tsinghua Center for Life Sciences, Beijing, China (M-hZ)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Circulating Permeability Factors in Primary Focal Segmental Glomerulosclerosis: A Review of Proposed Candidates. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3765608. [PMID: 27200372 PMCID: PMC4856884 DOI: 10.1155/2016/3765608] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Primary focal segmental glomerulosclerosis (FSGS) is a major cause of the nephrotic syndrome and often leads to end-stage renal disease. This review focuses on circulating permeability factors in primary FSGS that have been implicated in the pathogenesis for a long time, partly due to the potential recurrence in renal allografts within hours after transplantation. Recently, three molecules have been proposed as a potential permeability factor by different groups: the soluble urokinase plasminogen activator receptor (suPAR), cardiotrophin-like cytokine factor-1 (CLCF-1), and CD40 antibodies. Both CLCF-1 and CD40 antibodies have not been validated by independent research groups yet. Since the identification of suPAR, different studies have questioned the validity of suPAR as a biomarker to distinguish primary FSGS from other proteinuric kidney diseases as well as suPAR's pathogenic role in podocyte damage. Researchers have suggested that cleaved molecules of suPAR have a pathogenic role in FSGS but further studies are needed to determine this role. In future studies, proposed standards for the research of the permeability factor should be carefully followed. The identification of the permeability factor in primary FSGS would be of great clinical relevance as it could influence potential individual treatment regimen.
Collapse
|
48
|
|
49
|
Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes. Sci Rep 2015; 5:13647. [PMID: 26380915 PMCID: PMC4585377 DOI: 10.1038/srep13647] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022] Open
Abstract
Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR.
Collapse
|
50
|
Focal Segmental Glomerulosclerosis Recurrence: Soluble Urokinase Receptor Left Out? Transplantation 2015; 99:2449-50. [PMID: 26371599 DOI: 10.1097/tp.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|