1
|
Freedman BS, Dekel B. Engraftment of Kidney Organoids In Vivo. CURRENT TRANSPLANTATION REPORTS 2023; 10:29-39. [PMID: 37128257 PMCID: PMC10126570 DOI: 10.1007/s40472-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Purpose of Review Kidney organoids are heterocellular structures grown in vitro that resemble nephrons. Organoids contain diverse cell types, including podocytes, proximal tubules, and distal tubules in contiguous segments, patterned along a proximal-to-distal axis. Human organoids are being explored for their potential as regenerative grafts, as an alternative to allograft transplants and hemodialysis. Earlier work, analyzing grafts of developing human kidney tissue and whole human embryonic kidney rudiments, serves as a baseline for organoid implantation experiments. Recent Findings When transplanted into immunodeficient mice beneath the kidney capsule, kidney organoid xenografts can form vascularized, glomerulus-like structures, which exhibit a degree of filtration function. However, the absence of an appropriate collecting duct outlet and the presence of abundant stromal-like cells limits the functionality of such grafts and raises safety concerns. Recently, ureteric-like organoids have also been generated, which extend projections that resemble collecting ducts. Summary Combining nephron-like and ureteric-like organoids, along with renal stromal cells, may provide a path towards more functional grafts.
Collapse
Affiliation(s)
- Benjamin S. Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Departments of Medicine, Pathology (Adjunct), and Bioengineering (Adjunct), University of Washington School of Medicine, Seattle, WA USA
- Plurexa LLC, Seattle, WA USA
| | - Benjamin Dekel
- Division of Pediatric Nephrology and the Pediatric Stem Cell Research Institute, Sagol Center for Regenerative Medicine, Sheba Medical Center, School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
2
|
Renal lineage cells as a source for renal regeneration. Pediatr Res 2018; 83:267-274. [PMID: 28985199 DOI: 10.1038/pr.2017.255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 12/24/2022]
Abstract
The mammalian kidney is a highly complex organ, composed of various cell types within a unique structural framework. Nonetheless, in recent years, giant leaps in our understanding of nephrogenesis and the origin of new cells in the adult kidney have resulted in novel routes to regenerate damaged nephrons. While several strategies can be envisioned to achieve this aim, one common theme is the reliance on renal lineage cells, as extrarenal cells, such as bone marrow-derived cells, have been shown to be devoid of renal differentiation capacity. Herein, we will present the main motivation for the pursuit for cell-based therapies, which is the ever growing problem of chronic kidney disease (CKD), and discuss different strategies toward replenishing the damaged renal parenchyma. These include transplantation of fetal kidney grafts or fetal kidney stem cells, directed differentiation of pluripotent stem cells into kidney epithelia, establishment of renal progenitors from the adult kidney, and genetic reprogramming of mature kidney cells into a progenitor state. Taken together with novel techniques recapitulating the three-dimensional developmental environment, these advances are expected to take the field into a new era, bringing us closer than ever to the day when kidney stem cell-based therapy becomes a viable therapeutic option.
Collapse
|
3
|
Gupta KH, Goldufsky JW, Wood SJ, Tardi NJ, Moorthy GS, Gilbert DZ, Zayas JP, Hahm E, Altintas MM, Reiser J, Shafikhani SH. Apoptosis and Compensatory Proliferation Signaling Are Coupled by CrkI-Containing Microvesicles. Dev Cell 2017. [PMID: 28633020 DOI: 10.1016/j.devcel.2017.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apoptosis has been implicated in compensatory proliferation signaling (CPS), whereby dying cells induce proliferation in neighboring cells as a means to restore homeostasis. The nature of signaling between apoptotic cells and their neighboring cells remains largely unknown. Here we show that a fraction of apoptotic cells produce and release CrkI-containing microvesicles (distinct from exosomes and apoptotic bodies), which induce proliferation in neighboring cells upon contact. We provide visual evidence of CPS by videomicroscopy. We show that purified vesicles in vitro and in vivo are sufficient to stimulate proliferation in other cells. Our data demonstrate that CrkI inactivation by ExoT bacterial toxin or by mutagenesis blocks vesicle formation in apoptotic cells and inhibits CPS, thus uncoupling apoptosis from CPS. We further show that c-Jun amino-terminal kinase (JNK) plays a pivotal role in mediating vesicle-induced CPS in recipient cells. CPS could have important ramifications in diseases that involve apoptotic cell death.
Collapse
Affiliation(s)
- Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stephen J Wood
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas J Tardi
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gayathri S Moorthy
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Douglas Z Gilbert
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janet P Zayas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eunsil Hahm
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Morizane R, Miyoshi T, Bonventre JV. Concise Review: Kidney Generation with Human Pluripotent Stem Cells. Stem Cells 2017; 35:2209-2217. [PMID: 28869686 DOI: 10.1002/stem.2699] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217.
Collapse
Affiliation(s)
- Ryuji Morizane
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Tomoya Miyoshi
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Pode-Shakked N, Gershon R, Tam G, Omer D, Gnatek Y, Kanter I, Oriel S, Katz G, Harari-Steinberg O, Kalisky T, Dekel B. Evidence of In Vitro Preservation of Human Nephrogenesis at the Single-Cell Level. Stem Cell Reports 2017; 9:279-291. [PMID: 28552604 PMCID: PMC5511042 DOI: 10.1016/j.stemcr.2017.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
During nephrogenesis, stem/progenitor cells differentiate and give rise to early nephron structures that segment to proximal and distal nephron cell types. Previously, we prospectively isolated progenitors from human fetal kidney (hFK) utilizing a combination of surface markers. However, upon culture nephron progenitors differentiated and could not be robustly maintained in vitro. Here, by culturing hFK in a modified medium used for in vitro growth of mouse nephron progenitors, and by dissection of NCAM+/CD133− progenitor cells according to EpCAM expression (NCAM+/CD133−/EpCAM−, NCAM+/CD133−/EpCAMdim, NCAM+/CD133−/EpCAMbright), we show at single-cell resolution a preservation of uninduced and induced cap mesenchyme as well as a transitioning mesenchymal-epithelial state. Concomitantly, differentiating and differentiated epithelial lineages are also maintained. In vitro expansion of discrete stages of early human nephrogenesis in nephron stem cell cultures may be used for drug screening on a full repertoire of developing kidney cells and for prospective isolation of mesenchymal or epithelial renal lineages for regenerative medicine. mNPEM enables in vitro preservation of human renal embryonic CM and epithelia EpCAM allows further dissection of expanded NCAM+CD133− early nephric population Single-cell analysis unveils a continuous lineage hierarchy in nephrogenesis and WT Splice isoform switching confirms a unified MET hierarchy in nephrogenesis and WT
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Rotem Gershon
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Gal Tam
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Itamar Kanter
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Sarit Oriel
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Guy Katz
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel; The Joseph Buchman Gynecology and Maternity Center, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sheba Centers for Regenerative Medicine and Cancer Research, Sheba Medical Center, Tel-Hashomer 52621, Israel; Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|