1
|
Brady CT, Marshall A, Eagler LA, Pon TM, Duffey ME, Weil BR, Lang JK, Parker MD. Left Ventricular Systolic Dysfunction in NBCe1-B/C-Knockout Mice. Int J Mol Sci 2024; 25:9610. [PMID: 39273556 PMCID: PMC11395191 DOI: 10.3390/ijms25179610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is broadly expressed and is the only NBCe1 variant expressed in the heart, and NBCe1-C is a splice variant of NBCe1-B that is expressed in the brain. No cardiac manifestations have been reported from patients with pRTA, but studies in adult rats with virally induced reduction in cardiac NBCe1-B expression indicate that NBCe1-B loss leads to cardiac hypertrophy and prolonged QT intervals in rodents. NBCe1-null mice die shortly after weaning, so the consequence of congenital, global NBCe1 loss on the heart is unknown. To circumvent this issue, we characterized the cardiac function of NBCe1-B/C-null (KOb/c) mice that survive up to 2 months of age and which, due to the uninterrupted expression of NBCe1-A, do not exhibit the confounding acidemia of the globally null mice. In contrast to the viral knockdown model, cardiac hypertrophy was not present in KOb/c mice as assessed by heart-weight-to-body-weight ratios and cardiomyocyte cross-sectional area. However, echocardiographic analysis revealed reduced left ventricular ejection fraction, and intraventricular pressure-volume measurements demonstrated reduced load-independent contractility. We also observed increased QT length variation in KOb/c mice. Finally, using the calcium indicator Fura-2 AM, we observed a significant reduction in the amplitude of Ca2+ transients in paced KOb/c cardiomyocytes. These data indicate that congenital, global absence of NBCe1-B/C leads to impaired cardiac contractility and increased QT length variation in juvenile mice. It remains to be determined whether the cardiac phenotype in KOb/c mice is influenced by the absence of NBCe1-B/C from neuronal and endocrine tissues.
Collapse
Affiliation(s)
- Clayton T Brady
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
| | - Aniko Marshall
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
| | - Lisa A Eagler
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas M Pon
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
| | - Brian R Weil
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
- Veterans Affairs Western New York Health Care System, Buffalo, NY 14215, USA
| | - Jennifer K Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
- Veterans Affairs Western New York Health Care System, Buffalo, NY 14215, USA
- Department of Biomedical Engineering, State University of New York: University at Buffalo, Buffalo, NY 14260, USA
- Department of Pharmacology and Toxicology, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
- Department of Medicine, State University of New York: University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14203, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York: The University at Buffalo, Buffalo, NY 14209, USA
| |
Collapse
|
2
|
Brady CT, Marshall A, Zhang C, Parker MD. NBCe1-B/C-knockout mice exhibit an impaired respiratory response and an enhanced renal response to metabolic acidosis. Front Physiol 2023; 14:1201034. [PMID: 37405134 PMCID: PMC10315466 DOI: 10.3389/fphys.2023.1201034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
The sodium-bicarbonate cotransporter (NBCe1) has three primary variants: NBCe1-A, -B and -C. NBCe1-A is expressed in renal proximal tubules in the cortical labyrinth, where it is essential for reclaiming filtered bicarbonate, such that NBCe1-A knockout mice are congenitally acidemic. NBCe1-B and -C variants are expressed in chemosensitive regions of the brainstem, while NBCe1-B is also expressed in renal proximal tubules located in the outer medulla. Although mice lacking NBCe1-B/C (KOb/c) exhibit a normal plasma pH at baseline, the distribution of NBCe1-B/C indicates that these variants could play a role in both the rapid respiratory and slower renal responses to metabolic acidosis (MAc). Therefore, in this study we used an integrative physiologic approach to investigate the response of KOb/c mice to MAc. By means of unanesthetized whole-body plethysmography and blood-gas analysis, we demonstrate that the respiratory response to MAc (increase in minute volume, decrease in pCO2) is impaired in KOb/c mice leading to a greater severity of acidemia after 1 day of MAc. Despite this respiratory impairment, the recovery of plasma pH after 3-days of MAc remained intact in KOb/c mice. Using data gathered from mice housed in metabolic cages we demonstrate a greater elevation of renal ammonium excretion and greater downregulation of the ammonia recycling enzyme glutamine synthetase in KOb/c mice on day 2 of MAc, consistent with greater renal acid-excretion. We conclude that KOb/c mice are ultimately able to defend plasma pH during MAc, but that the integrated response is disturbed such that the burden of work shifts from the respiratory system to the kidneys, delaying the recovery of pH.
Collapse
Affiliation(s)
- Clayton T. Brady
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Aniko Marshall
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Chen Zhang
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Department of Biological Sciences, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| | - Mark D. Parker
- Jacobs School of Medicine and Biomedical Sciences, Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, Department of Ophthalmology, The State University of New York: The University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Saint-Criq V, Guequén A, Philp AR, Villanueva S, Apablaza T, Fernández-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA. Inhibition of the sodium-dependent HCO 3- transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. eLife 2022; 11:e75871. [PMID: 35635440 PMCID: PMC9173743 DOI: 10.7554/elife.75871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Anita Guequén
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Amber R Philp
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Tábata Apablaza
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Agustín Mansilla
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Livia Delpiano
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Iván Ruminot
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de ValdiviaValdiviaChile
| | - Michael A Gray
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Carlos A Flores
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| |
Collapse
|
4
|
Kantaputra P, Guven Y, Aksu B, Kalayci T, Doğan C, Intachai W, Olsen B, Tongsima S, Ngamphiw C, Noppakun K. Distal renal tubular acidosis, autoimmune thyroiditis, enamel hypomaturation, and tooth agenesis caused by homozygosity of a novel double-nucleotide substitution in SLC4A4. J Am Dent Assoc 2022; 153:668-676. [DOI: 10.1016/j.adaj.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
|
5
|
Mathur VS, Wesson DE, Tangri N, Li E, Bushinsky DA. Effects of veverimer on serum bicarbonate and physical function in women with chronic kidney disease and metabolic acidosis: a subgroup analysis from a randomised, controlled trial. BMC Nephrol 2022; 23:82. [PMID: 35216581 PMCID: PMC8881824 DOI: 10.1186/s12882-022-02690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Globally, the prevalence of chronic kidney disease (CKD) is higher in women than in men; however, women have been historically under-represented in nephrology clinical trials. Metabolic acidosis increases risk of progressive loss of kidney function, causes bone demineralization and muscle protein catabolism, and may be more consequential in women given their lower bone and muscle mass. Veverimer, an investigational, non-absorbed polymer that binds and removes gastrointestinal hydrochloric acid, is being developed as treatment for metabolic acidosis. METHODS This was a Phase 3, multicenter, randomised, blinded, placebo-controlled trial in 196 patients with CKD (eGFR: 20-40 mL/min/1.73 m2) and metabolic acidosis who were treated for up to 1 year with veverimer or placebo. We present the findings from a pre-specified subgroup analysis evaluating the effects of veverimer on metabolic acidosis and physical function among women (N = 77) enrolled in this trial. RESULTS At week 52, women treated with veverimer had a greater increase in mean (± standard error) serum bicarbonate than the placebo group (5.4 [0.5] vs. 2.2 [0.6] mmol/L; P < 0.0001). Physical Function reported by patients on the Kidney Disease and Quality of Life - Physical Function Domain, a measure that includes items related to walking, stair climbing, carrying groceries and other activities improved significantly in women randomized to veverimer vs placebo (+ 13.2 vs. -5.2, respectively, P < 0.0031). Objectively measured performance time on the repeated chair stand test also improved significantly in the veverimer group vs. placebo (P = 0.0002). CONCLUSIONS Veverimer was effective in treating metabolic acidosis in women with CKD, and significantly improved how they felt and functioned. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03390842 . Registered on January 4, 2018.
Collapse
Affiliation(s)
- Vandana S Mathur
- MathurConsulting LLC, 25 Upenuf Road, Suite 100, Woodside, CA, 94062-2633, USA.
| | - Donald E Wesson
- Texas A&M Health Sciences Center College of Medicine, Dallas, TX, USA
- Donald E Wesson Consulting, LLC, Dallas, TX, USA
| | | | | | - David A Bushinsky
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
6
|
Lee HW, Verlander JW, Shull GE, Harris AN, Weiner ID. Acid-base effects of combined renal deletion of NBCe1-A and NBCe1-B. Am J Physiol Renal Physiol 2022; 322:F208-F224. [PMID: 35001662 PMCID: PMC8836747 DOI: 10.1152/ajprenal.00358.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
The molecular mechanisms regulating ammonia metabolism are fundamental to acid-base homeostasis. Deletion of the A splice variant of Na+-bicarbonate cotransporter, electrogenic, isoform 1 (NBCe1-A) partially blocks the effect of acidosis to increase urinary ammonia excretion, and this appears to involve the dysregulated expression of ammoniagenic enzymes in the proximal tubule (PT) in the cortex but not in the outer medulla (OM). A second NBCe1 splice variant, NBCe1-B, is present throughout the PT, including the OM, where NBCe1-A is not present. The purpose of the present study was to determine the effect of combined renal deletion of NBCe1-A and NBCe1-B on systemic and PT ammonia metabolism. We generated NBCe1-A/B deletion using Cre-loxP techniques and used Cre-negative mice as controls. As renal NBCe1-A and NBCe1-B expression is limited to the PT, Cre-positive mice had PT NBCe1-A/B deletion [PT-NBCe1-A/B knockout (KO)]. Although on a basal diet, PT-NBCe1-A/B KO mice had severe metabolic acidosis, yet urinary ammonia excretion was not changed significantly. PT-NBCe1-A/B KO decreased the expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase and increased the expression of glutamine synthetase, an ammonia-recycling enzyme, in PTs in both the cortex and OM. Exogenous acid loading increased ammonia excretion in control mice, but PT-NBCe1-A/B KO prevented any increase. PT-NBCe1-A/B KO significantly blunted acid loading-induced changes in phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase expression in PTs in both the cortex and OM. We conclude that NBCe1-B, at least in the presence of NBCe1-A deletion, contributes to PT ammonia metabolism in the OM and thereby to systemic acid-base regulation.NEW & NOTEWORTHY The results of the present study show that combined deletion of both A and B splice variants of electrogenic Na+-bicarbonate cotransporter 1 from the proximal tubule impairs acid-base homeostasis and completely blocks changes in ammonia excretion in response to acidosis, indicating that both proteins are critical to acid-base homeostasis.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Autumn N Harris
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Deparment of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
7
|
Revisiting the Role of Ser982 Phosphorylation in Stoichiometry Shift of the Electrogenic Na +/ qHCO 3- Cotransporter NBCe1. Int J Mol Sci 2021; 22:ijms222312817. [PMID: 34884619 PMCID: PMC8657473 DOI: 10.3390/ijms222312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
In most cell types and heterologous expression systems, the electrogenic sodium-bicarbonate cotransporter NBCe1 operates with a 1Na+-2HCO3- stoichiometry that, given typical transmembrane electrochemical gradients, promotes Na+ and HCO3- influx. However, NBCe1 in the kidney mediates HCO3- efflux (HCO3- reabsorption), a direction that has been predicted to be favored only if NBCe1 operates with a 1:3 stoichiometry. The phosphorylation state of Ser982 in the cytosolic carboxy-terminal domain of NBCe1 has been reported to be a key determinant of the transporter stoichiometry, with non-phosphorylated Ser982 favoring a 1:3 stoichiometry. Conversely, phosphoproteomic data from renal cortical preparations have revealed the presence of NBCe1 peptides including phosphoserine982 (pSer982) and/or pSer985 although it was not known what proportion of NBCe1 molecules were phosphorylated. In the present study, we report the generation, characterization, and application of a novel phosphospecific antibody raised against NBCe1/pSer982 and show that, contrary to expectations, Ser982 is more prevalently phosphorylated in murine kidneys (in which NBCe1 mediates HCO3- efflux) than in murine colons (in which NBCe1 mediates HCO3- influx). Using phosphomimetic mutants of murine NBCe1 expressed in Xenopus oocytes, we found no evidence that the phosphorylation state of Ser982 or Ser985 alone influences the transport stoichiometry or conductance. Furthermore, we found that the phosphorylation of NBCe1/Ser982 is enhanced in murine kidneys following a 24 h induction of metabolic acidosis. We conclude that the phosphorylation status of Ser982 is not a key determinant of NBCe1 stoichiometry but correlates with presumed NBCe1 activity.
Collapse
|
8
|
Du L, Zahra A, Jia M, Wang Q, Wu J. Understanding the Functional Expression of Na+-Coupled SLC4 Transporters in the Renal and Nervous Systems: A Review. Brain Sci 2021; 11:1276. [PMID: 34679341 PMCID: PMC8534249 DOI: 10.3390/brainsci11101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Acid-base homeostasis is crucial for numerous physiological processes. Na+/HCO3- cotransporters (NBCs) belong to the solute carrier 4 (SLC4) family, which regulates intracellular pH as well as HCO3- absorption and secretion. However, knowledge of the structural functions of these proteins remains limited. Electrogenic NBC (NBCe-1) is thought to be the primary factor promoting the precise acid-base equilibrium in distinct cell types for filtration and reabsorption, as well as the function of neurons and glia. NBC dysregulation is strongly linked to several diseases. As such, the need for special drugs that interfere with the transmission function of NBC is becoming increasingly urgent. In this review, we focus on the structural and functional characteristics of NBCe1, and discuss the roles of NBCe1 in the kidney, central nervous system (CNS), and related disorders, we also summarize the research on NBC inhibitors. NBCe1 and the related pathways should be further investigated, so that new medications may be developed to address the related conditions.
Collapse
Affiliation(s)
- Le Du
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (L.D.); (A.Z.)
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (M.J.); (Q.W.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Disease, Beijing 100070, China
- Health Science Center, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
9
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. IRBIT activates NBCe1-B by releasing the auto-inhibition module from the transmembrane domain. J Physiol 2020; 599:1151-1172. [PMID: 33237573 PMCID: PMC7898672 DOI: 10.1113/jp280578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Key points The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Abstract The electrogenic Na+/HCO3− cotransporter NBCe1‐B is widely expressed in many tissues in the body. NBCe1‐B exhibits only basal activity due to the action of the auto‐inhibition domain (AID) in its unique amino‐terminus. However, NBCe1‐B can be activated by interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). Here, we investigate the molecular mechanism underlying the auto‐inhibition of NBCe1‐B and its activation by IRBIT. The IRBIT‐binding domain (IBD) of NBCe1‐B spans residues 1−52, essentially consisting of two arms, one negatively charged (residues 1−24) and the other positively charged (residues 40−52). The AID mainly spans residues 40−85, overlapping with the IBD in the positively charged arm. The magnitude of auto‐inhibition of NBCe1‐B is greatly decreased by manipulating the positively charged residues in the AID or by replacing a set of negatively charged residues with neutral ones in the transmembrane domain. The interaction between IRBIT and NBCe1‐B is abolished by mutating a set of negatively charged Asp/Glu residues (to Asn/Gln) plus a set of Ser/Thr residues (to Ala) in the PEST domain of IRBIT. However, this interaction is not affected by replacing the same set of Ser/Thr residues in the PEST domain with Asp. We propose that: (1) the AID, acting as a brake, binds to the transmembrane domain via electrostatic interaction to slow down NBCe1‐B; (2) IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain. The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Collapse
Affiliation(s)
- Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|