1
|
Ho QY, Hester J, Issa F. Regulatory cell therapy for kidney transplantation and autoimmune kidney diseases. Pediatr Nephrol 2024:10.1007/s00467-024-06514-2. [PMID: 39278988 DOI: 10.1007/s00467-024-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024]
Abstract
Regulatory cell therapies, including regulatory T cells and mesenchymal stromal cells, have shown promise in early clinical trials for reducing immunosuppression burden in transplantation. While regulatory cell therapies may also offer potential for treating autoimmune kidney diseases, data remains sparse, limited mainly to preclinical studies. This review synthesises current literature on the application of regulatory cell therapies in these fields, highlighting the safety and efficacy shown in existing clinical trials. We discuss the need for further clinical validation, optimisation of clinical and immune monitoring protocols, and the challenges of manufacturing and quality control under Good Manufacturing Practice conditions, particularly for investigator-led trials. Additionally, we explore the potential for expanding clinical indications and the unique challenges posed in paediatric applications. Future directions include scaling up production, refining protocols to ensure consistent quality across manufacturing sites, and extending applications to other immune-mediated diseases.
Collapse
Affiliation(s)
- Quan Yao Ho
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
2
|
Aktar N, Chen T, Moudud A, Xu S, Zhou X. Tolerogenic vehicles of antigens in the antigen-specific immunotherapy for autoimmunity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Hu J, Wu W, Yu M, Xia Z, Gao C. MicroRNA-340-5p inhibits endothelial apoptosis, inflammatory response, and pro-coagulation by targeting KDM4C in anti-neutrophil cytoplasmic antibody (ANCA)-mediated glomerulonephritis through activation of B cells. Autoimmunity 2021; 54:343-352. [PMID: 34121556 DOI: 10.1080/08916934.2021.1937609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, a class of systemic autoimmune diseases, results in damage of various critical organs including kidneys, lungs, eyes, and nervous system. MicroRNA-340-5p was confirmed to be downregulated in autoimmune pathogenesis. However, the role of miR-340-5p remains unknown in ANCA-induced glomerulonephritis (GN). The current study aimed to explore the role of miR-340-5p in ANCA-induced GN. The animal models of ANCA-induced GN was established by experimental autoimmune vasculitis (EAV) operation. The primary glomerular endothelial cells (PGEnCs) were treated with anti-myeloperoxidase (anti-MPO) to mimic cell injury in vitro. The renal function was analysed by measuring serum creatinine, blood urea nitrogen, urine blood, urine protein and urine leukocytes. The levels of RNA and proteins were examined by RT-qPCR and western blot analysis, respectively. The binding capacity between miR-340-5p and KDM4C was detected by luciferase reporter assay. Cell apoptosis was analysed by flow cytometry in vitro. Cell viability was determined by CCK-8 assay. The cleaved caspase-3 activity was analysed by immunofluorescent assay. Cell inflammation was measured by western blot. Cell procoagulant activity was assessed by FXa generation assay. The histological changes of renal tissues were assessed by Haematoxylin and eosin (H&E) staining assay. The correlation between miR-340-5p and KDM4C level (or content of TNF-α and IL-6) was analysed by Pearson correlation analysis. The injection of anti-MPO IgG induced a significant elevation of Serum creatinine and blood urea nitrogen in serum, as well as urine blood, urine protein and urine leukocytes. Importantly, KDM4C was downregulated in model group. In mechanism, we identified that miR-340-5p bound with KDM4C 3'untranslated region (UTR), negatively regulated KDM4C in endothelial cells and negatively correlated with KDM4C in serum of GN rats. In function, we found that miR-340-5p promoted B cell activation and proliferation by downregulating KDM4C. The in vitro assays showed that the decrease of cell viability induced by anti-MPO was reversed by miR-340-5p overexpression, and further reduced by KDM4C overexpression. Inversely, the suppressive effects of miR-340-5p mimics on cell apoptosis, cleaved caspase-3 activity, inflammatory response and pro-coagulation were countervailed by KDM4C overexpression in anti-MPO-treated cells. The in vivo assays validated that miR-340-5p overexpression mitigated the impairment of renal function, and histological changes induced by anti-MPO IgG injection in model group. Finally, we found the negative correlation between miR-340-5p and TNF-α (or IL-6) content in serum of GN rats. In conclusion, we found that miR-340-5p inhibited endothelial apoptosis and inflammatory response by targeting KDM4C in ANCA-mediated GN through activation of B cells, implying a potential novel insight for treatment of ANCA-mediated GN.
Collapse
Affiliation(s)
- Jian Hu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Department of Pediatrics, Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Min Yu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Gan PY, Dick J, O’Sullivan KM, Oudin V, Cao Le A, Koo Yuk Cheong D, Shim R, Alikhan M, Kitching AR, Ooi JD, Holdsworth SR. Anti-CD20 mAb-Induced B Cell Apoptosis Generates T Cell Regulation of Experimental Myeloperoxidase ANCA-Associated Vasculitis. J Am Soc Nephrol 2021; 32:1071-1083. [PMID: 33789951 PMCID: PMC8259682 DOI: 10.1681/asn.2020060834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/31/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Myeloperoxidase ANCA-associated vasculitis is a major cause of ESKD. Efficacy of anti-CD20 mAb treatment was tested in a mouse model of the disease. METHODS MPO immunization induced anti-MPO autoimmunity, and a subnephritogenic dose of sheep anti-mouse GBM globulin triggered GN. RESULTS Anti-CD20 mAb treatment increased the numbers and immunomodulatory capacity of MPO-specific T regulatory cells (Tregs) and attenuated T cell-mediated and humoral anti-MPO autoimmunity and GN. Disabling of Tregs negated the therapeutic benefit of anti-CD20 treatment. The mechanism of enhancement of Treg activity could be attributed to anti-CD20 mAb effects on inducing B cell apoptosis. Administering anti-CD20 mAb-induced apoptotic splenocytes to mice developing anti-MPO GN was as effective as anti-CD20 mAb treatment in inducing Tregs and attenuating both anti-MPO autoimmunity and GN. A nonredundant role for splenic macrophages in mediating the anti-CD20 mAb-induced immunomodulation was demonstrated by showing that administration of anti-CD20 mAb ex vivo-induced apoptotic splenocytes to unmanipulated mice attenuated autoimmunity and GN, whereas deletion of splenic marginal zone macrophages prevented anti-CD20 mAb-induced immunomodulation and treatment efficacy. Six days after administering anti-CD20 mAb to mice with murine anti-MPO GN, cell-mediated anti-MPO responses and GN were attenuated, and Tregs were enhanced, but ANCA levels were unchanged, suggesting humoral autoimmunity was redundant at this time point. CONCLUSIONS Collectively, these data suggest that, as well as reducing humoral autoimmunity, anti-CD20 mAb more rapidly induces protective anti-MPO Treg-mediated immunomodulation by splenic processing of anti-CD20-induced apoptotic B cells.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia,Department of Immunology, Monash Medical Center, Clayton, Victoria, Australia
| | - Jonathan Dick
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Kim M. O’Sullivan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Virginie Oudin
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Anne Cao Le
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Daniel Koo Yuk Cheong
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Raymond Shim
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Maliha Alikhan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - A. Richard Kitching
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia,Department of Nephrology, Monash Medical Center, Clayton, Victoria, Australia,Department of Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Joshua D. Ooi
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen R. Holdsworth
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia,Department of Immunology, Monash Medical Center, Clayton, Victoria, Australia,Department of Nephrology, Monash Medical Center, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Kitching AR, Anders HJ, Basu N, Brouwer E, Gordon J, Jayne DR, Kullman J, Lyons PA, Merkel PA, Savage COS, Specks U, Kain R. ANCA-associated vasculitis. Nat Rev Dis Primers 2020; 6:71. [PMID: 32855422 DOI: 10.1038/s41572-020-0204-y] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the development of autoantibodies to the neutrophil proteins leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined according to clinical features. However, genetic and other clinical findings suggest that these clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA+ or ANCA-, respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract and kidneys are most commonly and severely affected. AAVs have a complex and unique pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-mediated neutrophil activation, recruitment and injury, with effector T cells also involved. Without therapy, prognosis is poor but treatments, typically immunosuppressants, have improved survival, albeit with considerable morbidity from glucocorticoids and other immunosuppressive medications. Current challenges include improving the measures of disease activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted therapies with fewer adverse effects. Meeting these challenges requires a more detailed knowledge of the fundamental biology of AAV as well as cooperative international research and clinical trials with meaningful input from patients.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia.
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians University, Munich, Germany
| | - Neil Basu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Elisabeth Brouwer
- Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Jennifer Gordon
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | - David R Jayne
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine and Division of Clinical Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline O S Savage
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Renate Kain
- Department of Pathology, Medical University Vienna, Vienna, Austria
| |
Collapse
|