1
|
Morrison MW, Miller ME, Lombardo LM, Triolo RJ, Audu ML. Anatomical Registration of Implanted Sensors Improves Accuracy of Trunk Tilt Estimates with a Networked Neuroprosthesis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3816. [PMID: 38931600 PMCID: PMC11207283 DOI: 10.3390/s24123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
For individuals with spinal cord injuries (SCIs) above the midthoracic level, a common complication is the partial or complete loss of trunk stability in the seated position. Functional neuromuscular stimulation (FNS) can restore seated posture and other motor functions after paralysis by applying small electrical currents to the peripheral motor nerves. In particular, the Networked Neuroprosthesis (NNP) is a fully implanted, modular FNS system that is also capable of capturing information from embedded accelerometers for measuring trunk tilt for feedback control of stimulation. The NNP modules containing the accelerometers are located in the body based on surgical constraints. As such, their exact orientations are generally unknown and cannot be easily assessed. In this study, a method for estimating trunk tilt that employed the Gram-Schmidt method to reorient acceleration signals to the anatomical axes of the body was developed and deployed in individuals with SCI using the implanted NNP system. An anatomically realistic model of a human trunk and five accelerometer sensors was developed to verify the accuracy of the reorientation algorithm. Correlation coefficients and root mean square errors (RMSEs) were calculated to compare target trunk tilt estimates and tilt estimates derived from simulated accelerometer signals under a variety of conditions. Simulated trunk tilt estimates with correlation coefficients above 0.92 and RMSEs below 5° were achieved. The algorithm was then applied to accelerometer signals from implanted sensors installed in three NNP recipients. Error analysis was performed by comparing the correlation coefficients and RMSEs derived from trunk tilt estimates calculated from implanted sensor signals to those calculated via motion capture data, which served as the gold standard. NNP-derived trunk tilt estimates exhibited correlation coefficients between 0.80 and 0.95 and RMSEs below 13° for both pitch and roll in most cases. These findings suggest that the algorithm is effective at estimating trunk tilt with the implanted sensors of the NNP system, which implies that the method may be appropriate for extracting feedback signals for control systems for seated stability with NNP technology for individuals who have reduced control of their trunk due to paralysis.
Collapse
Affiliation(s)
- Matthew W. Morrison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.J.T.); (M.L.A.)
- Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (M.E.M.); (L.M.L.)
| | - Michael E. Miller
- Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (M.E.M.); (L.M.L.)
| | - Lisa M. Lombardo
- Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (M.E.M.); (L.M.L.)
| | - Ronald J. Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.J.T.); (M.L.A.)
- Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (M.E.M.); (L.M.L.)
| | - Musa L. Audu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (R.J.T.); (M.L.A.)
- Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (M.E.M.); (L.M.L.)
| |
Collapse
|
2
|
Kanakis AK, Benetos IS, Evangelopoulos DS, Vlamis J, Vasiliadis ES, Kotroni A, Pneumaticos SG. Electrical Stimulation and Motor Function Rehabilitation in Spinal Cord Injury: A Systematic Review. Cureus 2024; 16:e61436. [PMID: 38947571 PMCID: PMC11214755 DOI: 10.7759/cureus.61436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Spinal cord injury (SCI) often leads to devastating motor impairments, significantly affecting the quality of life of affected individuals. Over the last decades, spinal cord electrical stimulation seems to have encouraging effects on the motor recovery of impacted patients. This review aimed to identify clinical trials focused on motor function recovery through the application of epidural electrical stimulation, transcutaneous electrical stimulation, and functional electrical stimulation. Several clinical trials met these criteria, focusing on the impact of the aforementioned interventions on walking, standing, swimming, trunk stability, and upper extremity functionality, particularly grasp. After a thorough PubMed online database research, 37 clinical trials were included in this review, with a total of 192 patients. Many of them appeared to have an improvement in function, either clinically assessed or recorded through electromyography. This review outlines the various ways electrical stimulation techniques can aid in the motor recovery of SCI patients. It stresses the ongoing need for medical research to refine these techniques and ultimately enhance rehabilitation results in clinical settings.
Collapse
Affiliation(s)
- Asterios K Kanakis
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Ioannis S Benetos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | | | - John Vlamis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Elias S Vasiliadis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Aikaterini Kotroni
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Spyros G Pneumaticos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| |
Collapse
|
3
|
Friederich ARW, Lombardo LM, Foglyano KM, Audu ML, Triolo RJ. Stabilizing leaning postures with feedback controlled functional neuromuscular stimulation after trunk paralysis. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1222174. [PMID: 37841066 PMCID: PMC10568131 DOI: 10.3389/fresc.2023.1222174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Spinal cord injury (SCI) can cause paralysis of trunk and hip musculature that negatively impacts seated balance and ability to lean away from an upright posture and interact fully with the environment. Constant levels of electrical stimulation of peripheral nerves can activate typically paralyzed muscles and aid in maintaining a single upright seated posture. However, in the absence of a feedback controller, such seated postures and leaning motions are inherently unstable and unable to respond to perturbations. Three individuals with motor complete SCI who had previously received a neuroprosthesis capable of activating the hip and trunk musculature volunteered for this study. Subject-specific muscle synergies were identified through system identification of the lumbar moments produced via neural stimulation. Synergy-based calculations determined the real-time stimulation parameters required to assume leaning postures. When combined with a proportional, integral, derivative (PID) feedback controller and an accelerometer to infer trunk orientation, all individuals were able to assume non-erect postures of 30-40° flexion and 15° lateral bending. Leaning postures increased forward reaching capabilities by 10.2, 46.7, and 16 cm respectively for each subject when compared with no stimulation. Additionally, the leaning controllers were able to resist perturbations of up to 90 N, and all subjects perceived the leaning postures as moderately to very stable. Implementation of leaning controllers for neuroprostheses have the potential of expanding workspaces, increasing independence, and facilitating activities of daily living for individuals with paralysis.
Collapse
Affiliation(s)
- Aidan R. W. Friederich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Lisa M. Lombardo
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Kevin M. Foglyano
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Musa L. Audu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Ronald J. Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
4
|
Joshi K, Rejc E, Ugiliweneza B, Harkema SJ, Angeli CA. Spinal Cord Epidural Stimulation Improves Lower Spine Sitting Posture Following Severe Cervical Spinal Cord Injury. Bioengineering (Basel) 2023; 10:1065. [PMID: 37760167 PMCID: PMC10525621 DOI: 10.3390/bioengineering10091065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cervical spinal cord injury (SCI) leads to impaired trunk motor control, negatively impacting the performance of activities of daily living in the affected individuals. Improved trunk control with better sitting posture has been previously observed due to neuromuscular electrical stimulation and transcutaneous spinal stimulation, while improved postural stability has been observed with spinal cord epidural stimulation (scES). Hence, we studied how trunk-specific scES impacts sitting independence and posture. Fourteen individuals with chronic, severe cervical SCI with an implanted neurostimulator performed a 5-min tall-sit task without and with trunk-specific scES. Spine posture was assessed by placing markers on five spine levels and evaluating vertical spine inclination angles. Duration of trunk manual assistance was used to assess independence along with the number of independence changes and average independence score across those changes. With scES, the sacrum-L1 inclination and number of independence changes tended to decrease by 1.64 ± 3.16° (p = 0.07; Cohen's d = 0.53) and 9.86 ± 16.8 (p = 0.047; Cohen's d = 0.59), respectively. Additionally, for the participants who had poor sitting independence without scES, level of independence tended to increase by 12.91% [0%, 31.52%] (p = 0.38; Cohen's d = 0.96) when scES was present. Hence, trunk-specific scES promoted improvements in lower spine posture and lower levels of trunk assistance.
Collapse
Affiliation(s)
- Kundan Joshi
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (K.J.); (E.R.); (B.U.); (S.J.H.)
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (K.J.); (E.R.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (K.J.); (E.R.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (K.J.); (E.R.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY 40202, USA
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA; (K.J.); (E.R.); (B.U.); (S.J.H.)
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Friederich ARW, Bao X, Triolo RJ, Audu ML. Feedback control of upright seating with functional neuromuscular stimulation during a reaching task after spinal cord injury: a feasibility study. J Neuroeng Rehabil 2022; 19:139. [PMID: 36510259 PMCID: PMC9746096 DOI: 10.1186/s12984-022-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Restoring or improving seated stability after spinal cord injury (SCI) can improve the ability to perform activities of daily living by providing a dynamic, yet stable, base for upper extremity motion. Seated stability can be obtained with activation of the otherwise paralyzed trunk and hip musculature with neural stimulation, which has been shown to extend upper limb reach and improve seated posture. METHODS We implemented a proportional, integral, derivative (PID) controller to maintain upright seated posture by simultaneously modulating both forward flexion and lateral bending with functional neuromuscular stimulation. The controller was tested with a functional reaching task meant to require trunk movements and impart internal perturbations through rapid changes in inertia due to acquiring, moving, and replacing objects with one upper extremity. Five subjects with SCI at various injury levels who had received implanted stimulators targeting their trunk and hip muscles participated in the study. Each subject was asked to move a weighted jar radially from a center home station to one of three target stations. The task was performed with the controller active, inactive, or with a constant low level of neural stimulation. Trunk pitch (flexion) and roll (lateral bending) angles were measured with motion capture and plotted against each other to generate elliptical movement profiles for each task and condition. Postural sway was quantified by calculating the ellipse area. Additionally, the mean effective reach (distance between the shoulder and wrist) and the time required to return to an upright posture was determined during reaching movements. RESULTS Postural sway was reduced by the controller in two of the subjects, and mean effective reach was increased in three subjects and decreased for one. Analysis of the major direction of motion showed return to upright movements were quickened by 0.17 to 0.32 s. A 15 to 25% improvement over low/no stimulation was observed for four subjects. CONCLUSION These results suggest that feedback control of neural stimulation is a viable way to maintain upright seated posture by facilitating trunk movements necessary to complete reaching tasks in individuals with SCI. Replication of these findings on a larger number of subjects would be necessary for generalization to the various segments of the SCI population.
Collapse
Affiliation(s)
- Aidan R W Friederich
- Department of Biomedical Engineering, Case Western Reserve University, OH, Cleveland, USA.
| | - Xuefeng Bao
- Department of Biomedical Engineering, Case Western Reserve University, OH, Cleveland, USA
- Advanced Technology Center, Louis Stokes Veterans Affairs Hospital, OH, Cleveland, USA
| | - Ronald J Triolo
- Department of Biomedical Engineering, Case Western Reserve University, OH, Cleveland, USA
- Advanced Technology Center, Louis Stokes Veterans Affairs Hospital, OH, Cleveland, USA
| | - Musa L Audu
- Department of Biomedical Engineering, Case Western Reserve University, OH, Cleveland, USA
- Advanced Technology Center, Louis Stokes Veterans Affairs Hospital, OH, Cleveland, USA
| |
Collapse
|
6
|
Foglyano KM, Lombardo LM, Schnellenberger JR, Triolo RJ. Sudden stop detection and automatic seating support with neural stimulation during manual wheelchair propulsion. J Spinal Cord Med 2022; 45:204-213. [PMID: 32795162 PMCID: PMC8986199 DOI: 10.1080/10790268.2020.1800278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Objective: Wheelchair safety is of great importance since falls from wheelchairs are prevalent and often have devastating consequences. We developed an automatic system to detect destabilizing events during wheelchair propulsion under real-world conditions and trigger neural stimulation to stiffen the trunk to maintain seated postures of users with paralysis.Design: Cross-over interventionSetting: Laboratory and community settingsParticipants: Three able-bodied subjects and three individuals with SCI with previously implanted neurostimulation systemsInterventions: An algorithm to detect wheelchair sudden stops was developed. This was used to randomly trigger trunk extensor stimulation during sudden stops eventsOutcome Measures: Algorithm success and false positive rates were determined. SCI users rated each condition on a seven-point Usability Rating Scale to indicate safety.Results: The system detected sudden stops with a success rate of over 93% in community settings. When used to trigger trunk neurostimulation to ensure stability, the implant recipients consistently reported feeling safer (P<.05 for 2/3 subjects) with the system while encountering sudden stops as indicated by a 1-3 point change in safety rating.Conclusion: These preliminary results suggest that this system could monitor wheelchair activity and only apply stabilizing neurostimulation when appropriate to maintain posture. Larger scale, unsupervised and longer-term trials at home and in the community are indicated. This system could be generalized and applied to individuals without an implanted stimulation by utilizing surface stimulation, or by actuating a mechanical restraint when necessary, thus allowing unrestricted trunk movements and only restraining the user when necessary to ensure safety.Trial Registration: NCT01474148.
Collapse
Affiliation(s)
- Kevin M. Foglyano
- Department of Veterans Affairs, Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA,Correspondence to: Kevin M. Foglyano; Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, Ohio, USA; Ph: 216-791-3800x66020.
| | - Lisa M. Lombardo
- Department of Veterans Affairs, Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - John R. Schnellenberger
- Department of Veterans Affairs, Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Ronald J. Triolo
- Department of Veterans Affairs, Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Garcia-Garcia MG, Jovanovic LI, Popovic MR. Comparing preference related to comfort in torque-matched muscle contractions between two different types of functional electrical stimulation pulses in able-bodied participants. J Spinal Cord Med 2021; 44:S215-S224. [PMID: 34779723 PMCID: PMC8604463 DOI: 10.1080/10790268.2021.1970882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
CONTEXT/OBJECTIVE Functional electrical stimulation (FES) is commonly used in rehabilitation to generate electrically-induced muscle contractions. FES has been shown to assist in the recovery of voluntary motor functions after stroke or spinal cord injury. However, discomfort associated with FES can motivate patients to withdraw their participation from FES therapy despite its benefits. To address this issue, a functional electrical stimulator, called MyndMove™ (MyndTec Inc., Canada), has been developed to generate more comfortable contractions than conventional stimulators. DESIGN Cross-sectional, interventional, with two treatment arms. SETTING A laboratory within a rehabilitation center. PARTICIPANTS Twelve able-bodied participants. INTERVENTION FES delivered with two different stimulators, MyndMove™ and Compex Motion (Compex, Switzerland), during muscle contractions of high, moderate and low stimulation intensity. OUTCOME MEASURES Comfort-related preference to a given stimulator and the discomfort score rated through a Numeric Rating Scale (NRS-101) for both stimulators. RESULTS Participants perceived a reduction in discomfort during high-intensity stimulation generated using MyndMove™. In addition, MyndMove™ stimulations were preferred in 60% of all contractions. The reduction in discomfort associated with MyndMove™ might be due the fact that MyndMove™ delivers less charge to generate contractions of equivalent intensity, compared to Compex Motion. CONCLUSION Reducing discomfort during FES may help in generating stronger and more clinically useful contractions, increasing accessibility of FES therapy to include individuals with low tolerance to FES.
Collapse
Affiliation(s)
- Martha G. Garcia-Garcia
- The KITE Research Institute, Toronto Rehabilitation Institute – University Health Network, Toronto, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,CRANIA, University Health Network & University of Toronto, Toronto, Canada,Correspondence to: Martha G. Garcia-Garcia, Lyndhurst Centre, Toronto Rehabilitation Institute, 520 Sutherland Drive, Room B1, Toronto, OntarioM4G 3V9, Canada. ;
| | - Lazar I. Jovanovic
- The KITE Research Institute, Toronto Rehabilitation Institute – University Health Network, Toronto, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,CRANIA, University Health Network & University of Toronto, Toronto, Canada
| | - Milos R. Popovic
- The KITE Research Institute, Toronto Rehabilitation Institute – University Health Network, Toronto, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,CRANIA, University Health Network & University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Noga BR, Guest JD. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr Opin Neurol 2021; 34:804-811. [PMID: 34593718 PMCID: PMC8595808 DOI: 10.1097/wco.0000000000000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
9
|
Friederich ARW, Bao X, Triolo RJ, Audu ML. Feedback Control of Upright Seating with Functional Neuromuscular Stimulation during a Functional Task after Spinal Cord Injury: A Case Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5719-5722. [PMID: 34892419 DOI: 10.1109/embc46164.2021.9629582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seated stability is a major concern of individuals with trunk paralysis. Trunk paralysis is commonly caused by spinal cord injuries (SCI) at or above the thoracic spine. Current methods to improve stability restrict the movement of the user by constraining their trunk to an upright position. Feedback control of functional neuromuscular stimulation (FNS) can help maintain seated stability while still allowing the user to perform movements to accomplish functional tasks. In this study, an individual with a SCI (C7, AIS B) and an implanted stimulator capable of recruiting trunk and hip musculature unilaterally moved a weighted jar on a countertop to and from three prescribed stations directly in front, laterally, and across midline. For comparison, the tasks were performed with constant baseline stimulation and with feedback modulated stimulation based on the tilt of the trunk obtained from an external accelerometer fed into two PID controllers; one for forward trunk pitch and the other for lateral roll. The trunk pitch and roll angles were obtained through motion capture cameras and various measures of postural sway (95% fitted ellipse area, root mean squared (RMS), path length) and the repeatability (coefficient of variation (CoV), variance ratio (VR)) were calculated. Feedback control significantly increased RMS of trunk movement along the major axis of the fitted ellipse, but decreased RMS values during bending along the minor axis of motion. As a result, the fitted ellipse area decreased when deploying the jar to one of the stations and increased with the other two. The CoV indicated reduced variation in the presence of feedback controlled stimulation for all stations, and VR showed higher repeatability in trunk pitch. Plots of the trunk pitch and roll revealed a faster return to upright motion due to feedback stimulation.Clinical relevance- Feedback control in combination with FNS is a viable method to improve seated stability while still allowing dynamic movements in individuals with a SCI, thus addressing a major concern of the population.
Collapse
|
10
|
Bailey SN, Foglyano KM, Bean NF, Triolo RJ. Effect of Context-Dependent Modulation of Trunk Muscle Activity on Manual Wheelchair Propulsion. Am J Phys Med Rehabil 2021; 100:983-989. [PMID: 33443856 DOI: 10.1097/phm.0000000000001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aims of the study were to reliably determine the two main phases of manual wheelchair propulsion via a simple wearable sensor and to evaluate the effects of modulated trunk and hip stimulation on manual wheelchair propulsion during the challenging tasks of ramp assent and level sprint. DESIGN An offline tool was created to identify common features between wrist acceleration signals for all subjects who corresponded to the transitions between the contact and recovery phases of manual wheelchair propulsion. For one individual, the acceleration rules and thresholds were implemented for real-time phase-change event detection and modulation of stimulation. RESULTS When pushing with phase-dependent modulated stimulation, there was a significant (P < 0.05) increase in the primary speed variable (5%-6%) and the subject rated pushing as "moderately or very easy." In the offline analysis, the average phase-change event detection success rate was 79% at the end of contact and 71% at the end of recovery across the group. CONCLUSIONS Signals from simple, wrist-mounted accelerometers can detect the phase transitions during manual wheelchair propulsion instead of elaborate and expensive, instrumented systems. Appropriately timing changes in muscle activation with the propulsion cycle can result in a significant increase in speed, and the system was consistently perceived to be significantly easier to use.
Collapse
Affiliation(s)
- Stephanie Nogan Bailey
- From the Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio (SNB, KMF, NFB, RJT); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio (NFB, RJT); and Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio (RJT)
| | | | | | | |
Collapse
|
11
|
Noamani A, Agarwal K, Vette A, Rouhani H. Predicted Threshold for Seated Stability: Estimation of Margin of Stability Using Wearable Inertial Sensors. IEEE J Biomed Health Inform 2021; 25:3361-3372. [PMID: 33857004 DOI: 10.1109/jbhi.2021.3073352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals with spinal cord injury suffer from seated instability due to impaired trunk neuromuscular function. Monitoring seated stability toward the development of closed-loop controlled neuroprosthetic technologies could be beneficial for restoring trunk stability during sitting in affected individuals. However, there is a lack of (1) a biomechanical characterization to quantify the relationship between the trunk kinematics and sitting balance; and (2) a validated wearable biomedical device for assessing dynamic sitting posture and fall-risk in real-time. This study aims to: (a) determine the limit of dynamic seated stability as a function of the trunk center of mass (COM) position and velocity relative to the base of support; (b) experimentally validate the predicted limit of stability using traditional motion capture; (c) compare the predicted limit of stability with that predicted in the literature for standing and walking; and (d) validate a wearable device for assessing dynamic seated stability and risk of loss of balance. First, we used a six-segment model of the seated human body for simulation. To obtain the limit of stability, we applied forward dynamics and optimization to obtain the maximum feasible initial velocities of the trunk COM that would bring the trunk COM position to the front-end of the base-of-support for a set of initial COM positions. Second, experimental data were obtained from fifteen able-bodied individuals who maintained sitting balance while base-of-support perturbations were applied with three different amplitudes. A motion capture system and four inertial measurement units (IMUs) were used to estimate the trunk COM motion states (i.e., trunk COM position and velocity). The margin of stability was calculated as the shortest distance of the instantaneous COM motion states to those obtained as the limit of stability in the state-space plane. All experimentally obtained trunk COM motion states fell within the limit of stability. A high correlation and small root-mean-square difference were observed between the estimated trunk COM states obtained by the motion capture system and IMUs. IMU-based wearable technology, along with the predicted limit of dynamic seated stability, can estimate the margin of stability during perturbed sitting. Therefore, it has the potential to monitor the seated stability of wheelchair users affected by trunk instability.
Collapse
|
12
|
Friederich ARW, Audu ML, Triolo RJ. Characterization of the Force Production Capabilities of Paralyzed Trunk Muscles Activated With Functional Neuromuscular Stimulation in Individuals With Spinal Cord Injury. IEEE Trans Biomed Eng 2021; 68:2389-2399. [PMID: 33211651 PMCID: PMC8131402 DOI: 10.1109/tbme.2020.3039404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Paralysis of the trunk results in seated instability leading to difficulties performing activities of daily living. Functional neuromuscular stimulation (FNS) combined with control systems have the potential to restore some dynamic functions of the trunk. However, design of multi-joint, multi-muscle control systems requires characterization of the stimulation-driven muscles responsible for movement. OBJECTIVE This study characterizes the input-output properties of paralyzed trunk muscles activated by FNS, and explores co-activation of muscles. METHODS Four participants with various spinal cord injuries (C7 AIS-B, T4 AIS-B, T5 AIS-A, C5 AIS-C) were constrained so lumbar forces were transmitted to a load cell while an implanted neuroprosthesis activated otherwise paralyzed hip and paraspinal muscles. Isometric force recruitment curves in the nominal seated position were generated by inputting the level of stimulation (pulse width modulation) while measuring the resulting muscle force. Two participants returned for a second experiment where muscles were co-activated to determine if their actions combined linearly. RESULTS Recruitment curves of most trunk and hip muscles fit sigmoid shaped curves with a regression coefficient above 0.75, and co-activation of the muscles combined linearly across the hip and lumbar joint. Subject specific perturbation plots showed one subject is capable of resisting up to a 300N perturbation anteriorly and 125N laterally; with some subjects falling considerably below these values. CONCLUSION Development of a trunk stability control system can use sigmoid recruitment dynamics and assume muscle forces combine linearly. SIGNIFICANCE This study informs future designs of multi-muscle, and multi-dimensional FNS systems to maintain seated posture and stability.
Collapse
|
13
|
Peev N, Komarov A, Osorio-Fonseca E, Zileli M. Rehabilitation of Spinal Cord Injury: WFNS Spine Committee Recommendations. Neurospine 2020; 17:820-832. [PMID: 33401859 PMCID: PMC7788409 DOI: 10.14245/ns.2040270.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is accompanied by a significant number of complications associated with damage to the spinal cord, gross functional impairments leading to limited self-care and movement, leading to a high level of disability, social and psychological maladaptation of the patients. Besides, pain and spasticity negatively affect rehabilitation programs. This search was conducted in PubMed/MEDLINE database. All studies published in English language (n = 16,297) were considered for inclusion. Of all studies evaluating rehabilitation in SCI patients (n = 80) were included. Based on the literature review the faculty of the WFNS Spine Committee created statements covering different aspects of the contemporary rehabilitation process of the SCI patients. The prepared statements were subjected to discussions, followed by anonymous voting process by the members of the WFNS Spine Committee. As result of the diccussions and the voting process the statements were modified and published as recommendations of the WFNS Spine Committee. The care for the SCI has gone a long way from the times after the World War II when these patients were considered hopeless in terms of any functional recovery, to the contemporary comprehensive rehabilitation programs. The rehabilitation is important part of the modern comprehencive treatment of SCI patients nowadays. The current manuscript reflects different aspects of the contemporary rehabilitaton process and decision makings, which were discussed by the faculty of the WFNS Spine Committee resulting in issuing of the following recommendations.
Collapse
Affiliation(s)
- Nikolay Peev
- Department of Neurosurgery, Belfast HS Care Trust, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Alexander Komarov
- Department of Adaptive Physical Culture and Recreation, Russian State Social University, Moscow, Russian Federation
| | - Enrique Osorio-Fonseca
- El Bosque University, Bogotá Colombia, Neurosurgery LosCobos Medical Center, Bogotá, Colombia
| | - Mehmet Zileli
- Department of Neurosurgery, Ege University, Izmir, Turkey
| |
Collapse
|
14
|
A closed-loop self-righting controller for seated balance in the coronal and diagonal planes following spinal cord injury. Med Eng Phys 2020; 86:47-56. [PMID: 33261733 DOI: 10.1016/j.medengphy.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) often results in loss of the ability to keep the trunk erect and stable while seated. Functional neuromuscular stimulation (FNS) can cause muscles paralyzed by SCI to contract and assist with trunk stability. We have extended the results of a previously reported threshold-based controller for restoring upright posture using FNS in the sagittal plane to more challenging displacements of the trunk in the coronal plane. The system was applied to five individuals with mid-thoracic or higher SCI, and in all cases the control system successfully restored upright sitting. The potential of the control system to maintain posture in forward-sideways (diagonal) directions was also tested in three of the subjects. In all cases, the controller successfully restored posture to erect. Clinically, these results imply that a simple, threshold based control scheme can restore upright sitting from forward, lateral or diagonal leaning without a chest strap; and that removal of barriers to upper extremity interaction with the surrounding environment could potentially allow objects to be more readily retrieved from around the wheelchair. Technical performance of the system was assessed in terms of three variables: response time, recovery time and percent maximum deviation from erect. Overall response and recovery times varied widely among subjects in the coronal plane (415±213 ms and 1381±883 ms, respectively) and in the diagonal planes (530±230 ms and 1800±820 ms, respectively). Average response time was significantly lower (p < 0.05) than the recovery time in all cases. The percent maximum deviation from erect was of the order of 40% or less for 9 out of 10 cases in the coronal plane and 5 out of 6 cases in diagonal directions.
Collapse
|
15
|
Estimating total maximum isometric force output of trunk and hip muscles after spinal cord injury. Med Biol Eng Comput 2020; 58:739-751. [PMID: 31974873 DOI: 10.1007/s11517-020-02120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Functional neuromuscular stimulation (FNS) can be used to restore seated trunk function in individuals paralyzed due to spinal cord injury (SCI). Musculoskeletal models allow for the design and tuning of controllers for use with FNS; however, these models often use aggregated estimates for parameters of the musculotendon elements, the most significant of which is maximum isometric force (MIF). Stimulated MIF for individuals with SCI is typically assumed to be approximately 50% of the values exhibited by able-bodied muscles, which itself varies between studies and individuals. A method for estimating subject-specific MIF during dynamic motions in individuals with SCI produced by electrical stimulation has been developed to test this assumption and obtained more accurate estimates for biomechanical analysis and controller design. A simple on-off controller was applied to individuals with SCI seated in the workspace of a motion capture system to record joint angles of three types of trunk motions: forward flexion, left and right lateral bending followed by returning, un-aided, to upright posture via neural stimulation delivered to activate the muscles of the hips and trunk. System identification was used with a musculoskeletal model to find the optimal MIF values that reproduced the experimentally observed motions. Experiments with five volunteers with SCI indicate that an MIF of the 50% able-bodied values commonly used is significantly lower than the identified estimates in 33 of 44 muscle groups tested. This suggests that the strengths of paralyzed muscles when stimulated with FNS have been underestimated in many situations and their true force outputs may be higher than the values suggested for use in simulation studies with musculoskeletal models. These findings indicate that subject-specific musculoskeletal models can more closely mimic the motions of subjects by using individualized estimates of MIF, which may allow the design and tuning of controllers while reducing the time spent with subjects in the loop.
Collapse
|
16
|
Moineau B, Marquez-Chin C, Alizadeh-Meghrazi M, Popovic MR. Garments for functional electrical stimulation: Design and proofs of concept. J Rehabil Assist Technol Eng 2019; 6:2055668319854340. [PMID: 35186317 PMCID: PMC8855467 DOI: 10.1177/2055668319854340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
Introduction Repeated use of functional electrical stimulation can promote functional recovery in individuals with neurological paralysis. We designed garments able to deliver functional electrical stimulation. Methods Shirts and pants containing electrodes knitted with a conductive yarn were produced. Electrodes were moistened with water before use. Stimulation intensity at four thresholds levels (sensory, movement, full range of motion, and maximal), stimulation comfort, and electrical properties of the interface were tested in one able-bodied subject with garment electrodes and size-matched conventional gel electrodes. The pants and shirt were then used to explore usability and design limitations. Results Compared to gel electrodes, fabric electrodes had a lower sensory threshold (on forearm muscles) but they had a higher maximal stimulation threshold (for all tested muscles). The stimulation delivery was comfortable when the garment electrodes were recently moistened; however, as the electrodes dried (within 9 to 18 min) stimulation became unpleasant. Inconsistent water content in the fabric electrodes caused inconsistent intensity thresholds and inconsistent voltage necessary to apply a desired stimulation current. Garments’ tightness and impracticality of electrode lead necessitate further design improvement. Conclusions Fabric electrodes offer a promising alternative to gel electrodes. Further work involving people with paralysis is required to overcome the identified challenges.
Collapse
Affiliation(s)
- Bastien Moineau
- Rehabilitation Engineering Laboratory, Lyndhurst Centre, KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Myant Inc., Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Cesar Marquez-Chin
- Rehabilitation Engineering Laboratory, Lyndhurst Centre, KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Department of Occupational Sciences and Occupational Therapy, University of Toronto, Toronto, ON, Canada
| | - Milad Alizadeh-Meghrazi
- Rehabilitation Engineering Laboratory, Lyndhurst Centre, KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Myant Inc., Toronto, ON, Canada
| | - Milos R Popovic
- Rehabilitation Engineering Laboratory, Lyndhurst Centre, KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Rath M, Vette AH, Ramasubramaniam S, Li K, Burdick J, Edgerton VR, Gerasimenko YP, Sayenko DG. Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. J Neurotrauma 2018; 35:2540-2553. [PMID: 29786465 DOI: 10.1089/neu.2017.5584] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Electrical neuromodulation of spinal networks improves the control of movement of the paralyzed limbs after spinal cord injury (SCI). However, the potential of noninvasive spinal stimulation to facilitate postural trunk control during sitting in humans with SCI has not been investigated. We hypothesized that transcutaneous electrical stimulation of the lumbosacral enlargement can improve trunk posture. Eight participants with non-progressive SCI at C3-T9, American Spinal Injury Association Impairment Scale (AIS) A or C, performed different motor tasks during sitting. Electromyography of the trunk muscles, three-dimensional kinematics, and force plate data were acquired. Spinal stimulation improved trunk control during sitting in all tested individuals. Stimulation resulted in elevated activity of the erector spinae, rectus abdominis, and external obliques, contributing to improved trunk control, more natural anterior pelvic tilt and lordotic curve, and greater multi-directional seated stability. During spinal stimulation, the center of pressure (COP) displacements decreased to 1.36 ± 0.98 mm compared with 4.74 ± 5.41 mm without stimulation (p = 0.0156) in quiet sitting, and the limits of stable displacement increased by 46.92 ± 35.66% (p = 0.0156), 36.92 ± 30.48% (p = 0.0156), 54.67 ± 77.99% (p = 0.0234), and 22.70 ± 26.09% (p = 0.0391) in the forward, backward, right, and left directions, respectively. During self-initiated perturbations, the correlation between anteroposterior arm velocity and the COP displacement decreased from r = 0.5821 (p = 0.0007) without to r = 0.5115 (p = 0.0039) with stimulation, indicating improved trunk stability. These data demonstrate that the spinal networks can be modulated transcutaneously with tonic electrical spinal stimulation to physiological states sufficient to generate a more stable, erect sitting posture after chronic paralysis.
Collapse
Affiliation(s)
- Mrinal Rath
- 1 Department of Biomedical Engineering, University of California , Los Angeles, California.,2 Department of Integrative Biology and Physiology, University of California , Los Angeles, California
| | - Albert H Vette
- 3 Department of Mechanical Engineering, University of Alberta , Donadeo Innovation Centre for Engineering, Edmonton, Alberta, Canada .,4 Glenrose Rehabilitation Hospital , Alberta Health Services, Edmonton, Alberta, Canada
| | | | - Kun Li
- 5 Division of Engineering and Applied Sciences, California Institute of Technology , Pasadena, California
| | - Joel Burdick
- 5 Division of Engineering and Applied Sciences, California Institute of Technology , Pasadena, California
| | - Victor R Edgerton
- 1 Department of Biomedical Engineering, University of California , Los Angeles, California.,2 Department of Integrative Biology and Physiology, University of California , Los Angeles, California.,6 Department of Neurobiology and Neurosurgery, University of California , Los Angeles, California.,7 Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona , Barcelona, Badalona, Spain .,8 Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology , Sydney, Australia
| | - Yury P Gerasimenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, California.,9 Pavlov Institute of Physiology , St. Petersburg, Russia
| | - Dimitry G Sayenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, California.,10 Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute , Houston, Texas
| |
Collapse
|
18
|
Bobet J, Masani K, Popovic MR, Vette AH. Kinematics-based prediction of trunk muscle activity in response to multi-directional perturbations during sitting. Med Eng Phys 2018; 58:S1350-4533(18)30089-4. [PMID: 29895449 DOI: 10.1016/j.medengphy.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 11/23/2022]
Abstract
Recent work suggests that functional electrical stimulation can be used to enhance dynamic trunk stability following spinal cord injury. In this context, knowledge of the relation between trunk kinematics and muscle activation in non-disabled individuals may assist in developing kinematics-based neuroprostheses. Our objective was therefore to predict the activation profiles of the major trunk muscles from trunk kinematics following multi-directional perturbations during sitting. Trunk motion and electromyograms (EMG) from ten major trunk muscles were acquired in twelve non-disabled, seated individuals who experienced a force of approximately 200 N applied to the trunk in eight horizontal directions. A linear, time-invariant model with feedback gains on angular trunk displacement, velocity, and acceleration was optimized to predict the EMG from trunk kinematics. For each muscle, only the three directions that produced the largest EMG response were considered. Our results indicate that the time course of the processed EMG was similar across muscles and directions and that the model accounted for 68-92% of the EMG variance. A combination of neural and biomechanical mechanisms associated with trunk control can explain the obtained model parameters. Future work will apply the gained insights in the design of movement-controlled neuroprostheses for facilitating trunk stability following spinal cord injury.
Collapse
Affiliation(s)
- Jacques Bobet
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Kei Masani
- Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
| | - Milos R Popovic
- Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 111 Avenue NW, Edmonton, Alberta T5G 0B7, Canada.
| |
Collapse
|
19
|
Armstrong KL, Lombardo LM, Foglyano KM, Audu ML, Triolo RJ. Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events. J Neuroeng Rehabil 2018; 15:17. [PMID: 29530053 PMCID: PMC5848592 DOI: 10.1186/s12984-018-0362-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The leading cause of injury for manual wheelchair users are tips and falls caused by unexpected destabilizing events encountered during everyday activities. The purpose of this study was to determine the feasibility of automatically restoring seated stability to manual wheelchair users with spinal cord injury (SCI) via a threshold-based system to activate the hip and trunk muscles with electrical stimulation during potentially destabilizing events. METHODS We detected and classified potentially destabilizing sudden stops and turns with a wheelchair-mounted wireless inertial measurement unit (IMU), and then applied neural stimulation to activate the appropriate muscles to resist trunk movement and restore seated stability. After modeling and preliminary testing to determine the appropriate inertial signatures to discriminate between events and reliably trigger stimulation, the system was implemented and evaluated in real-time on manual wheelchair users with SCI. Three participants completed simulated collision events and four participants completed simulated rapid turns. Data were analyzed as a series of individual case studies with subjects acting as their own controls with and without the system active. RESULTS The controller achieved 93% accuracy in detecting collisions and right turns, and 100% accuracy in left turn detection. Two of the three subjects who participated in collision testing with stimulation experienced significantly decreased maximum anterior-posterior trunk angles (p < 0.05). Similar results were obtained with implanted and surface stimulation systems. CONCLUSIONS This study demonstrates the feasibility of a neural stimulation control system based on simple inertial measurements to improve trunk stability and overall safety of people with spinal cord injuries during manual wheelchair propulsion. Further studies are required to determine clinical utility in real world situations and generalizability to the broader SCI or other population of manual or powered wheelchair users. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT01474148 . Registered 11/08/2011 retrospectively registered.
Collapse
Affiliation(s)
- Kiley L. Armstrong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
- Advanced Platform Technology Center, Cleveland Louis Stokes Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| | - Lisa M. Lombardo
- Advanced Platform Technology Center, Cleveland Louis Stokes Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| | - Kevin M. Foglyano
- Advanced Platform Technology Center, Cleveland Louis Stokes Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| | - Musa L. Audu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
- Advanced Platform Technology Center, Cleveland Louis Stokes Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| | - Ronald J. Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
- Advanced Platform Technology Center, Cleveland Louis Stokes Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| |
Collapse
|
20
|
|
21
|
Patel K, Milosevic M, Nakazawa K, Popovic MR, Masani K. Wheelchair Neuroprosthesis for Improving Dynamic Trunk Stability. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2472-2479. [DOI: 10.1109/tnsre.2017.2727072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Lei Y, Perez MA. Phase-dependent deficits during reach-to-grasp after human spinal cord injury. J Neurophysiol 2017; 119:251-261. [PMID: 28931614 DOI: 10.1152/jn.00542.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most cervical spinal cord injuries result in asymmetrical functional impairments in hand and arm function. However, the extent to which reach-to-grasp movements are affected in humans with incomplete cervical spinal cord injury (SCI) remains poorly understood. Using kinematics and electromyographic (EMG) recordings in hand and arm muscles we studied the different phases of unilateral self-paced reach-to-grasp movements (arm acceleration, hand opening and closing) to a small cylinder in the more and less affected arms of individuals with cervical SCI and in age-matched controls. We found that SCI subjects showed prolonged movement duration in both arms during arm acceleration, and hand opening and closing compared with controls. Notably, the more affected arm showed an additional increase in movement duration at the time to close the hand compared with the less affected arm. Also, the time at which the index finger and thumb contacted the object and the variability of finger movement trajectory were increased in the more compared with the less affected arm of SCI participants. Participants with prolonged movement duration during hand closing were those with more pronounced deficits in sensory function. The muscle activation ratio between the first dorsal interosseous and abductor pollicis brevis muscles decreased during hand closing in the more compared with the less affected arm of SCI participants. Our results suggest that deficits in movement kinematics during reach-to-grasp movements are more pronounced at the time to close the hand in the more affected arm of SCI participants, likely related to deficits in EMG muscle activation and sensory function. NEW & NOTEWORTHY Humans with cervical spinal cord injury usually present asymmetrical functional impairments in hand and arm function. Here, we demonstrate for the first time that deficits in movement kinematics during reaching and grasping movements are more pronounced at the time to close the hand in the more affected arm of spinal cord injury. We suggest that this is in part related to deficits in muscle activation ratios between hand muscles and a decrease in sensory function.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
23
|
Crawford A, Armstrong K, Loparo K, Audu M, Triolo R. Detecting destabilizing wheelchair conditions for maintaining seated posture. Disabil Rehabil Assist Technol 2017; 13:178-185. [PMID: 28366027 DOI: 10.1080/17483107.2017.1300347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The purpose of this study was to detect and classify potentially destabilizing conditions encountered by manual wheelchair users with spinal cord injuries (SCI) to dynamically increase stability and prevent falls. METHODS A volunteer with motor complete T11 paraplegia repeatedly propelled his manual wheelchair over level ground and simulated destabilizing conditions including sudden stops, bumps and rough terrain. Wireless inertial measurement units attached to the wheelchair frame and his sternum recorded associated accelerations and angular velocities. Algorithms based on mean, standard deviation and minimum Mahalanobis distance between conditions were constructed and applied to the data off-line to discriminate between events. Classification accuracy was computed to assess effects of sensor position and potential for automatically selecting a dynamic intervention to best stabilize the wheelchair user. RESULTS The decision algorithm based on acceleration signals successfully differentiated destabilizing conditions and level over-ground propulsion with classification accuracies of 95.8, 58.3 and 91.7% for the chest, wheelchair and both sensors, respectively. CONCLUSION Mahalanobis distance classification based on trunk accelerations is a feasible method for detecting destabilizing events encountered by wheelchair users and may serve as an effective trigger for protective interventions. Incorporating data from wheelchair-mounted sensors decreases the false negative rate. Implications for Rehabilitation SCI has a significant impact on quality of life, compromising the ability to participate in social or leisure activities, and complete other activities of daily living for an independent lifestyle. Using inertial measurement units to build an event classifier for control the actions of a neuroprosthetic device for maintaining seated posture in wheelchair users. Varying muscle activation increases user stability reducing the risk of injury.
Collapse
Affiliation(s)
- Anna Crawford
- a Motion Study Laboratory, Louis Stokes Cleveland, Affairs Medical Center , Cleveland , OH , USA.,b Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA
| | - Kiley Armstrong
- a Motion Study Laboratory, Louis Stokes Cleveland, Affairs Medical Center , Cleveland , OH , USA.,b Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA
| | - Kenneth Loparo
- c Department of Electrical Engineering and Computer Science , Case Western Reserve University , Cleveland , OH , USA
| | - Musa Audu
- a Motion Study Laboratory, Louis Stokes Cleveland, Affairs Medical Center , Cleveland , OH , USA.,b Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA.,e Department of Veterans, Advanced Platform Technology Centre , Cleveland , OH , USA
| | - Ronald Triolo
- a Motion Study Laboratory, Louis Stokes Cleveland, Affairs Medical Center , Cleveland , OH , USA.,d Department of Orthopaedics , Case Western Reserve University , Cleveland , OH , USA.,e Department of Veterans, Advanced Platform Technology Centre , Cleveland , OH , USA
| |
Collapse
|
24
|
Lopes ACG, Ochoa-Diaz C, Baptista RS, Fonseca LO, Fattal C, Coste CA, Bó APL, Fachin-Martins E. Electrical Stimulation to Reduce the Overload in Upper Limbs During Sitting Pivot Transfer in Paraplegic: A Preliminary Study. Eur J Transl Myol 2016; 26:6223. [PMID: 28078071 PMCID: PMC5220218 DOI: 10.4081/ejtm.2016.6223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Transfer is a key ability and allows greater interact with the environment and social participation. Conversely, paraplegics have great risk of pain and injury in the upper limbs due to joint overloads during activities of daily living, like transfer. The main goal of this study is to verify if the use of functional electrical stimulation (FES) in the lower limbs of paraplegic individuals can assist the sitting pivot transfer (SPT). The secondary objective is to verify if there is a greater participation of the lower limbs during lift pivot phase. A preliminary study was done with one complete paraplegic individual. Temporal parameters were calculated and a kinetic assessment was done during the SPT. The preliminary results showed the feasibility of FES for assisting the SPT.
Collapse
Affiliation(s)
- Ana Claudia G Lopes
- SARAH Network Rehabilitation Hospitals, Brasília, Brazil; NTAAI, Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazi
| | - Claudia Ochoa-Diaz
- LARA, Faculdade de Tecnologia, Universidade de Brasília , Brasília, Brazil
| | - Roberto S Baptista
- LARA, Faculdade de Tecnologia, Universidade de Brasília , Brasília, Brazil
| | - Lucas O Fonseca
- LARA, Faculdade de Tecnologia, Universidade de Brasília , Brasília, Brazil
| | | | | | - Antônio P L Bó
- LARA, Faculdade de Tecnologia, Universidade de Brasília , Brasília, Brazil
| | | |
Collapse
|
25
|
Calabro FJ, Perez MA. Bilateral reach-to-grasp movement asymmetries after human spinal cord injury. J Neurophysiol 2015; 115:157-67. [PMID: 26467518 DOI: 10.1152/jn.00692.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022] Open
Abstract
Cervical spinal cord injury (SCI) in humans typically damages both sides of the spinal cord, resulting in asymmetric functional impairments in the arms. Despite this well-accepted notion and the growing emphasis on the use of bimanual training strategies, how movement of one arm affects the motion of the contralateral arm after SCI remains unknown. Using kinematics and multichannel electromyographic (EMG) recordings we studied unilateral and bilateral reach-to-grasp movements to a small and a large cylinder in individuals with asymmetric arm impairments due to cervical SCI and age-matched control subjects. We found that the stronger arm of SCI subjects showed movement durations longer than control subjects during bilateral compared with unilateral trials. Specifically, movement duration was prolonged when opening and closing the hand when reaching for a large and a small object, respectively, accompanied by deficient activation of finger flexor and extensor muscles. In subjects with SCI interlimb coordination was reduced compared with control subjects, and individuals with lesser coordination between hands were those who showed prolonged times to open the hand. Although the weaker arm showed movement durations during bilateral compared with unilateral trials that were proportional to controls, the stronger arm was excessively delayed during bilateral reaching. Altogether, our findings demonstrate that during bilateral reach-to-grasp movements the more impaired arm has detrimental effects on hand opening and closing of the less impaired arm and that they are related, at least in part, to deficient control of EMG activity of hand muscles. We suggest that hand opening might provide a time to drive bimanual coordination adjustments after human SCI.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, Pittsburgh, Pennsylvania; and
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, Pittsburgh, Pennsylvania; and Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida
| |
Collapse
|
26
|
Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, Vette AH, Audu ML, Kobetic R, Chang SR, Chan KM, Dukelow S, Bourbeau DJ, Brose SW, Gustafson KJ, Kiss ZHT, Mushahwar VK. Functional electrical stimulation and spinal cord injury. Phys Med Rehabil Clin N Am 2015; 25:631-54, ix. [PMID: 25064792 DOI: 10.1016/j.pmr.2014.05.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.
Collapse
Affiliation(s)
- Chester H Ho
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada.
| | - Ronald J Triolo
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Anastasia L Elias
- Chemical and Materials Engineering, W7-002 ECERF, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kevin L Kilgore
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Anthony F DiMarco
- MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Kath Bogie
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Musa L Audu
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Rudi Kobetic
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Sarah R Chang
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| | - Sean Dukelow
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Dennis J Bourbeau
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Steven W Brose
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA; Ohio University Heritage College of Osteopathic Medicine, Grosvenor Hall, Athens, OH 45701, USA
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Zelma H T Kiss
- Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
27
|
Audu ML, Lombardo LM, Schnellenberger JR, Foglyano KM, Miller ME, Triolo RJ. A neuroprosthesis for control of seated balance after spinal cord injury. J Neuroeng Rehabil 2015; 12:8. [PMID: 25608888 PMCID: PMC4326199 DOI: 10.1186/1743-0003-12-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/13/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A major desire of individuals with spinal cord injury (SCI) is the ability to maintain a stable trunk while in a seated position. Such stability is invaluable during many activities of daily living (ADL) such as regular work in the home and office environments, wheelchair propulsion and driving a vehicle. Functional neuromuscular stimulation (FNS) has the ability to restore function to paralyzed muscles by application of measured low-level currents to the nerves serving those muscles. METHODS A feedback control system for maintaining seated balance under external perturbations was designed and tested in individuals with thoracic and cervical level spinal cord injuries. The control system relied on a signal related to the tilt of the trunk from the vertical position (which varied between 1.0 ≡ erect posture and 0.0 ≡ most forward flexed posture) derived from a sensor fixed to the sternum to activate the user's own hip and trunk extensor muscles via an implanted neuroprosthesis. A proportional-derivative controller modulated stimulation between trunk tilt values indicating deviation from the erect posture and maximum desired forward flexion. Tests were carried out with external perturbation forces set at 35%, 40% and 45% body-weight (BW) and maximal forward trunk tilt flexion thresholds set at 0.85, 0.75 and 0.70. RESULTS Preliminary tests in a case series of five subjects show that the controller could maintain trunk stability in the sagittal plane for perturbations up to 45% of body weight and for flexion thresholds as low as 0.7. The mean settling time varied across subjects from 0.5(±0.4) and 2.0 (±1.1) seconds. Mean response time of the feedback control system varied from 393(±38) ms and 536(±84) ms across the cohort. CONCLUSIONS The results show the high potential for robust control of seated balance against nominal perturbations in individuals with spinal cord injury and indicates that trunk control with FNS is a promising intervention for individuals with SCI.
Collapse
Affiliation(s)
- Musa L Audu
- />Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Lisa M Lombardo
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - John R Schnellenberger
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - Kevin M Foglyano
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - Michael E Miller
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
| | - Ronald J Triolo
- />Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
- />Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH USA
- />Department of Orthopedics, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|