1
|
Chen YH, Lv H, Shen N, Wang XM, Tang S, Xiong B, Ding J, Geng MY, Huang M. EPHA2 feedback activation limits the response to PDEδ inhibition in KRAS-dependent cancer cells. Acta Pharmacol Sin 2020; 41:270-277. [PMID: 31316177 PMCID: PMC7471410 DOI: 10.1038/s41401-019-0268-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023] Open
Abstract
KRAS is one of the most important proto-oncogenes. Its mutations occur in almost all tumor types, and KRAS mutant cancer is still lack of effective therapy. Prenyl-binding protein phosphodiesterase-δ (PDEδ) is required for the plasma membrane association and subsequent activation of KRAS oncogenic signaling. Recently, targeting PDEδ has provided new promise for KRAS mutant tumors. However, the therapeutic potential of PDEδ inhibition remains obscure. In this study, we explored how PDEδ inhibition was responded in KRAS mutant cancer cells, and identified KRAS mutant subset responsive to PDEδ inhibition. We first performed siRNA screen of KRAS growth dependency of a small panel of human cancer lines, and identified a subset of KRAS mutant cancer cells that were highly dependent on KRAS signaling. Among these cells, only a fraction of KRAS-dependent cells responded to PDEδ depletion, though KRAS plasma membrane association was effectively impaired. We revealed that the persistent RAF/MEK/ERK signaling seemed responsible for the lack of response to PDEδ depletion. A kinase array further identified that the feedback activation of EPH receptor A2 (EPHA2) accounted for the compensatory activation of RAF/MEK/ERK signaling in these cells. Simultaneous inhibition of EPHA2 and PDEδ led to the growth inhibition of KRAS mutant cancer cells. Together, this study gains a better understanding of PDEδ-targeted therapeutic strategy and suggests the combined inhibition of EPHA2 and PDEδ as a potential therapy for KRAS mutant cancer.
Collapse
Affiliation(s)
- Yue-Hong Chen
- School of Life Science, Shanghai University, Shanghai, 200444, China
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Lv
- School of Life Science, Shanghai University, Shanghai, 200444, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Shen
- School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiao-Min Wang
- School of Life Science, Shanghai University, Shanghai, 200444, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Tang
- School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ding
- School of Life Science, Shanghai University, Shanghai, 200444, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Yu Geng
- School of Life Science, Shanghai University, Shanghai, 200444, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Huang
- School of Life Science, Shanghai University, Shanghai, 200444, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase 3β and F-box and WD repeat domain-containing 7. Oncogene 2018; 37:3715-3728. [DOI: 10.1038/s41388-018-0225-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
|
3
|
TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene 2016; 36:1585-1596. [PMID: 27593936 DOI: 10.1038/onc.2016.328] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of death worldwide, and thus new molecular targets need to be identified to improve treatment efficacy. Although epidermal growth factor receptor (EGFR)/KRAS mutation-driven lung tumorigenesis is well understood, the mechanism of EGFR/KRAS-independent signal activation remains elusive. Enhanced TFAP2C (transcription factor activating enhancer-binding protein 2C) expression is associated with poor prognosis in some types of cancer patients, but little is known of its relation with the pathogenesis of lung cancer. In the present study, we found that TFAP2C overexpression was associated with cell cycle activation and NSCLC cell tumorigenesis. Interestingly, TFAP2C blocked AKAP12-mediated cyclin D1 inhibition by inducing the overexpression of oncogenic microRNA (miRNA)-183 and simultaneously activated cyclin-dependent kinase 6-mediated cell cycle progression by downregulating tumor-suppressive miRNA-33a. In a mouse xenograft model, TFAP2C promoted lung tumorigenesis and disease aggressiveness via the miR-183 and miR-33a pathways. The study provides a mechanism of mitogenic and oncogenic signaling via two functionally opposed miRNAs and suggests that TFAP2C-induced cell cycle hyperactivation contributes to lung tumorigenesis.
Collapse
|
4
|
Doddapaneni BS, Kyryachenko S, Chagani SE, Alany RG, Rao DA, Indra AK, Alani AW. A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma. J Control Release 2015; 220:503-514. [DOI: 10.1016/j.jconrel.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/18/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023]
|
5
|
Sushma C, Prasad S, Devi R, Murthy S, Rao TS, Naidu CK. High Frequency of Codon 12 but not Codon 13 and 61 K-ras Gene Mutations in Invasive Ductal Carcinoma of Breast in a South Indian Population. Asian Pac J Cancer Prev 2015; 16:3505-8. [DOI: 10.7314/apjcp.2015.16.8.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Ginkgo biloba extract decreases non-small cell lung cancer cell migration by downregulating metastasis-associated factor heat-shock protein 27. PLoS One 2014; 9:e91331. [PMID: 24618684 PMCID: PMC3950153 DOI: 10.1371/journal.pone.0091331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/09/2014] [Indexed: 02/05/2023] Open
Abstract
Heat-shock proteins (HSPs) are molecular chaperones that protect proteins from damage. HSP27 expression is associated with cancer transformation and invasion. Ginkgo biloba extract (EGb761), the most widely sold herbal supplement, has antiangiogenic effects and induces tumor apoptosis. Data regarding the effect of EGb761 on HSP expression is limited, particularly in cancer. HSP27 expression in paired tumors and normal lung tissues of 64 patients with non-small cell lung cancer (NSCLC) were detected by real-time PCR, western blotting, and immunohistochemistry. NSCLC cell lines (A549/H441) were used to examine the migratory abilities in vitro. NSCLC tissue showed higher HSP27 expression than normal lung tissue. Kaplan–Meier survival analysis showed that NSCLC patients with low HSP27 expression ratio (<1) had significantly longer survival time than those with a high expression ratio (>1) (p = 0.04). EGb761 inhibited HSP27 expression and migratory ability of A549/H441 cells, which is the same as HSP27-siRNA transfection effect. Moreover, EGb761 treatment activated the AKT and p38 pathways and did not affect the expression of PI3K, ERK, and JNK pathways. HSP27 is a poor prognostic indicator of NSCLC. EGb761 can decrease the migration ability of A549/H441 by inhibiting HSP27 expression most likely through AKT and p38 MAPK pathways activation.
Collapse
|
7
|
Kooshyar MM, Ayatollahi H, Keramati MR, Sadeghian MH, Miri M, Sheikhi M. Lack of KRAS gene mutations in chronic myeloid leukemia in Iran. Asian Pac J Cancer Prev 2014; 14:6653-6. [PMID: 24377583 DOI: 10.7314/apjcp.2013.14.11.6653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The single most common proto-oncogene change in human neoplasms is a point mutation in RAS genes. A wide range of variation in frequency of KRAS mutations has been seen in hematologic malignancies. Despite this, RAS roles in leukemogenesis remain unclear. The frequency of KRAS mutations in CML has been reported to be between zero an 10%. Many attempts have been done to develop an anti-RAS drug as a therapeutic target. . MATERIALS AND METHODS This cross sectional study was performed in Mashhad University of Medical Sciences, Mashhad, Iran from 2010-2012. In 78 CML patients (diagnosed according to WHO 2008 criteria) in chronic or accelerated phases, KRAS mutations in codons 12 and 13 were analyzed using a modified PCR- restriction fragment length polymorphism (RFLP) method. RESULTS We did not detect any KRAS mutations in this study. CONCLUSIONS KRAS mutations are overall rare in early phase CML and might be secondary events happening late in leukemogenesis cooperating with initial genetic lesions.
Collapse
Affiliation(s)
- Mohammad Mahdi Kooshyar
- Hematology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
8
|
Zhang C, He H, Zhang H, Yu D, Zhao W, Chen Y, Shao R. The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 2013; 434:35-41. [PMID: 23545258 DOI: 10.1016/j.bbrc.2013.03.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The treatment of hepatocellular carcinoma (HCC) remains a challenge and the future of cancer therapy will incorporate rational combinations directed to molecular targets that cooperate to drive critical pro-survival signaling. Sphingosine kinase 1 (SphK1) has been shown to regulate various processes important for cancer progression. Given the up-regulated expression of SphK1 in response to the silence of N-ras and other interactions between Ras/ERK and SphK1, it was speculated that combined inhibition of Ras/ERK and SphK1 would create enhanced antitumor effects. Experimental results showed that dual blockage of N-ras/ERK and SphK1 resulted in enhanced growth inhibitions in human hepatoma cells. Similarly, MEK1/2 Inhibitor U0126 potentiated SKI II-induced apoptosis in hepatoma HepG2 cells, consistently with the further attenuation of Akt/ERK/NF-κB signaling pathway. It was also shown that the combination of SKI II and U0126 further attenuated the migration of hepatoma HepG2 cells via FAK/MLC-2 signaling pathway. Taken together, the dual inhibition of SphK1 and Ras/ERK pathway resulted in enhanced effects, which might be an effective therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
10
|
de Cremoux P, Robert J. [Cell signalling and cancer: characterisation of therapeutic targets]. ACTA ACUST UNITED AC 2012; 60:217-22. [PMID: 22728008 DOI: 10.1016/j.patbio.2012.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022]
Abstract
Cellular communication is required for the life of pluricellular organisms. The informations exchanged between cells belong to six major types of order to be executed, opposite each other: proliferate or differentiate; remain attached or migrate; survive or die. The cancer cell is genetically unstable, able to explore all the functions encoded by the genome and to consider every proliferative or migratory advantage for selecting it and transmit it to its descent. All the signalling pathways involved in proliferation or differentiation, in adhesion and migration, in survival and death may be altered by oncogenic alterations. These alterations are precisely those which can be targeted for therapy: from this observation was forged the concept of targeted therapy. We present here some examples of therapeutic targeting at the level of a major proliferation pathway by showing how it was possible to identify and characterise relevant targets, invent original new therapeutic tools and decipher the mechanisms of resistance which occur and hinder the success of targeted therapies. This example is the proliferation signalling pathway which starts from the activation of tyrosine kinase receptors by cognate growth factors and ends by the activation of transcription factors which trigger the transcription of the genes required for DNA replication, after undergoing through numerous intermediate molecules constituting the MAP kinase pathway: RAS, RAF, MEK and ERK.
Collapse
Affiliation(s)
- P de Cremoux
- Université Paris-Diderot, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | |
Collapse
|