1
|
Zhang Z, Rosenberg MD. Brain network dynamics predict moments of surprise across contexts. Nat Hum Behav 2024:10.1038/s41562-024-02017-0. [PMID: 39715875 DOI: 10.1038/s41562-024-02017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/11/2024] [Indexed: 12/25/2024]
Abstract
We experience surprise when reality conflicts with our expectations. When we encounter such expectation violations in psychological tasks and daily life, are we experiencing completely different forms of surprise? Or is surprise a fundamental psychological process with shared neural bases across contexts? To address this question, we identified a brain network model, the surprise edge-fluctuation-based predictive model (EFPM), whose regional interaction dynamics measured with functional magnetic resonance imaging (fMRI) predicted surprise in an adaptive learning task. The same model generalized to predict surprise as a separate group of individuals watched suspenseful basketball games and as a third group watched videos violating psychological expectations. The surprise EFPM also uniquely predicts surprise, capturing expectation violations better than models built from other brain networks, fMRI measures and behavioural metrics. These results suggest that shared neurocognitive processes underlie surprise across contexts and that distinct experiences can be translated into the common space of brain dynamics.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Psychology, The University of Chicago, Chicago, IL, USA.
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, Chicago, IL, USA.
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Kiss L, Szikora B, Linnell KJ. Music in the eye of the beholder: a pupillometric study on preferred background music, attentional state, and arousal. PSYCHOLOGICAL RESEARCH 2024; 88:1616-1628. [PMID: 38652303 PMCID: PMC11281972 DOI: 10.1007/s00426-024-01963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Although background music listening during attention-demanding tasks is common, there is little research on how it affects fluctuations in attentional state and how these fluctuations are linked to physiological arousal. The present study built on Kiss and Linnell (2021) - showing a decrease in mind-wandering and increase in task-focus states with background music - to explore the link between attentional state and arousal with and without background music. 39 students between the ages of 19-32 completed a variation of the Psychomotor Vigilance Task in silence and with their self-selected background music (music they would normally listen to during attention-demanding tasks). Objective arousal measures (pretrial pupil diameter and task-evoked pupillary responses) and subjective attentional state measures (mind-wandering, task-focus, and external-distraction states) were collected throughout the task. Results showed a link between attentional state and arousal and indicated that background music increased arousal. Importantly, arousal mediated the effect of music to decrease mind-wandering and increase task-focus attentional states, suggesting that the arousal increase induced by music was behind the changes in attentional states. These findings show, for the first time in the context of background music listening, that there is a link between arousal and attentional state.
Collapse
Affiliation(s)
- Luca Kiss
- Department of Psychology, Goldsmiths University of London, 8 Lewisham Way New Cross, London, SE14 6NW, UK.
| | | | - Karina J Linnell
- Department of Psychology, Goldsmiths University of London, 8 Lewisham Way New Cross, London, SE14 6NW, UK
| |
Collapse
|
3
|
Wang Y, Guo Y, Wang J, Liu Z, Li X. Pupillary response to moving stimuli of different speeds. J Eye Mov Res 2021; 14:10.16910/jemr.14.1.2. [PMID: 35440971 PMCID: PMC9013523 DOI: 10.16910/jemr.14.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To investigate the pupillary response to moving stimuli of different speeds and the influence
of different luminance environments, 28 participants with normal or corrected-to-normal
vision were included. The participants were required to track moving optotypes horizontally,
and their pupils were recorded on video with an infrared camera. Stimuli of different speeds
from 10 to 60 degree per seconds were presented in low (0.01 cd/m2) and moderate (30
cd/m2) luminance environments. Experiment 1 demonstrated that the motion stimuli induced
pupil dilation in a speed-dependent pattern. The pupil dilation increased as the speed
increased, and the pupil dilation gradually increased, then reached saturation. Experiment 2
showed that a stimulus targeting the rod- or cone-mediated pathway could induce pupil dilation
in a similar speed-dependent pattern. The absolute but not relative pupil dilation in
the cone paradigm was significantly larger than that in the rod paradigm. As the speed increased,
the pupil dilation in the cone paradigm reached saturation at speed slower than the
rod paradigm. Motion stimuli induced pupil dilation in a speed-dependent pattern, and as
the motion speed increased, the pupil dilation gradually increased and reached saturation.
The speed required to reach saturation in the cone paradigm was slower than in the rod
paradigm.
Collapse
Affiliation(s)
- Yuexin Wang
- Peking University Third Hospital, Beijing, China,
These authors contributed equally to the article
| | - Yining Guo
- Peking University Third Hospital, Beijing, China,
These authors contributed equally to the article
| | - Jiajia Wang
- Peking University Third Hospital, Beijing, China,
These authors contributed equally to the article
| | - Ziyuan Liu
- Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Peking University Third Hospital, Beijing, China,
Corresponding author
| |
Collapse
|
4
|
de Gee JW, Correa CMC, Weaver M, Donner TH, van Gaal S. Pupil Dilation and the Slow Wave ERP Reflect Surprise about Choice Outcome Resulting from Intrinsic Variability in Decision Confidence. Cereb Cortex 2021; 31:3565-3578. [PMID: 33822917 PMCID: PMC8196307 DOI: 10.1093/cercor/bhab032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Central to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain's arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the positive slow wave component of event-related potentials reflect rapid changes in the arousal level of the brain. Here, we ask whether and how these variables may reflect surprise: the mismatch between one's expectation about being correct and the outcome of a decision, when expectations fluctuate due to internal factors (e.g., engagement). We show that during an elementary decision task in the face of uncertainty both physiological markers of phasic arousal reflect surprise. We further show that pupil responses and slow wave event-related potential are unrelated to each other and that prediction error computations depend on feedback awareness. These results further advance our understanding of the role of central arousal systems in decision-making under uncertainty.
Collapse
Affiliation(s)
- Jan Willem de Gee
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Building N43, Martinistraße 52, 20246, Hamburg, Germany
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund St, Houston, TX 77030, USA
| | - Camile M C Correa
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
- Centre of Functionally Integrative Neuroscience, Aarhus University, 44 Nørrebrogade Building 1A, 8000 Aarhus, Denmark
| | - Matthew Weaver
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
| | - Tobias H Donner
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Building N43, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon van Gaal
- Department of Psychology, Amsterdam Brain & Cognition (ABC), University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Endestad T, Godøy RI, Sneve MH, Hagen T, Bochynska A, Laeng B. Mental Effort When Playing, Listening, and Imagining Music in One Pianist's Eyes and Brain. Front Hum Neurosci 2020; 14:576888. [PMID: 33192407 PMCID: PMC7593683 DOI: 10.3389/fnhum.2020.576888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023] Open
Abstract
We investigated "musical effort" with an internationally renowned, classical, pianist while playing, listening, and imagining music. We used pupillometry as an objective measure of mental effort and fMRI as an exploratory method of effort with the same musical pieces. We also compared a group of non-professional pianists and non-musicians by the use of pupillometry and a small group of non-musicians with fMRI. This combined approach of psychophysiology and neuroimaging revealed the cognitive work during different musical activities. We found that pupil diameters were largest when "playing" (regardless of whether there was sound produced or not) compared to conditions with no movement (i.e., "listening" and "imagery"). We found positive correlations between pupil diameters of the professional pianist during different conditions with the same piano piece (i.e., normal playing, silenced playing, listen, imagining), which might indicate similar degrees of load on cognitive resources as well as an intimate link between the motor imagery of sound-producing body motions and gestures. We also confirmed that musical imagery had a strong commonality with music listening in both pianists and musically naïve individuals. Neuroimaging provided evidence for a relationship between noradrenergic (NE) activity and mental workload or attentional intensity within the domain of music cognition. We found effort related activity in the superior part of the locus coeruleus (LC) and, similarly to the pupil, the listening and imagery engaged less the LC-NE network than the motor condition. The pianists attended more intensively to the most difficult piece than the non-musicians since they showed larger pupils for the most difficult piece. Non-musicians were the most engaged by the music listening task, suggesting that the amount of attention allocated for the same task may follow a hierarchy of expertise demanding less attentional effort in expert or performers than in novices. In the professional pianist, we found only weak evidence for a commonality between subjective effort (as rated measure-by-measure) and the objective effort gauged with pupil diameter during listening. We suggest that psychophysiological methods like pupillometry can index mental effort in a manner that is not available to subjective awareness or introspection.
Collapse
Affiliation(s)
- Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Helgelandssykehuset, Mosjøen, Norway
| | - Rolf Inge Godøy
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | | | - Thomas Hagen
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Agata Bochynska
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychology, New York University, New York, NY, United States
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Fink LK, Lange EB, Groner R. The application of eye-tracking in music research. J Eye Mov Res 2019; 11:10.16910/jemr.11.2.1. [PMID: 33828684 PMCID: PMC7725399 DOI: 10.16910/jemr.11.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Though eye-tracking is typically a methodology applied in the visual research domain, recent studies suggest its relevance in the context of music research. There exists a communityof researchers interested in this kind of research from varied disciplinary backgrounds scattered across the globe. Therefore, in August 2017, an international conference was held at the Max Planck Institute for Empirical Aesthetics in Frankfurt, Germany,to bring this research community together. The conference was dedicated to the topic of music and eye-tracking, asking the question: what do eye movements, pupil dilation, and blinking activity tell us about musical processing? This special issue is constituted of top-scoring research from the conference and spans a range of music-related topics. From tracking the gaze of performers in musical trios to basic research on how eye movements are affected by background music, the contents of this special issue highlight a variety of experimental approaches and possible applications of eye-tracking in music research.
Collapse
|