1
|
Wall DA, Tarrant SP, Wang C, Mills KV, Lennon CW. Intein Inhibitors as Novel Antimicrobials: Protein Splicing in Human Pathogens, Screening Methods, and Off-Target Considerations. Front Mol Biosci 2021; 8:752824. [PMID: 34692773 PMCID: PMC8529194 DOI: 10.3389/fmolb.2021.752824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Protein splicing is a post-translational process by which an intervening polypeptide, or intein, catalyzes its own removal from the flanking polypeptides, or exteins, concomitant with extein ligation. Although inteins are highly abundant in the microbial world, including within several human pathogens, they are absent in the genomes of metazoans. As protein splicing is required to permit function of essential proteins within pathogens, inteins represent attractive antimicrobial targets. Here we review key proteins interrupted by inteins in pathogenic mycobacteria and fungi, exciting discoveries that provide proof of concept that intein activity can be inhibited and that this inhibition has an effect on the host organism's fitness, and bioanalytical methods that have been used to screen for intein activity. We also consider potential off-target inhibition of hedgehog signaling, given the similarity in structure and function of inteins and hedgehog autoprocessing domains.
Collapse
Affiliation(s)
- Diana A Wall
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Seanan P Tarrant
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Christopher W Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
2
|
Understanding the role of flexible alkyl-α,ω-diamine linkers on the substitution behaviour of dinuclear trans-platinum(II) complexes: A kinetic and mechanistic study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
4
|
Adamus-Grabicka AA, Markowicz-Piasecka M, Cieślak M, Królewska-Golińska K, Hikisz P, Kusz J, Małecka M, Budzisz E. Biological Evaluation of 3-Benzylidenechromanones and Their Spiropyrazolines-Based Analogues. Molecules 2020; 25:E1613. [PMID: 32244705 PMCID: PMC7180617 DOI: 10.3390/molecules25071613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
A series of 3-benzylidenechrmanones 1, 3, 5, 7, 9 and their spiropyrazoline analogues 2, 4, 6, 8, 10 were synthesized. X-ray analysis confirms that compounds 2 and 8 crystallize in a monoclinic system in P21/n space groups with one and three molecules in each asymmetric unit. The crystal lattice of the analyzed compounds is enhanced by hydrogen bonds. The primary aim of the study was to evaluate the anti-proliferative potential of 3-benzylidenechromanones and their spiropyrazoline analogues towards four cancer cell lines. Our results indicate that parent compounds 1 and 9 with a phenyl ring at C2 have lower cytotoxic activity against cancer cell lines than their spiropyrazolines analogues. Analysis of IC50 values showed that the compounds 3 and 7 exhibited higher cytotoxic activity against cancer cells, being more active than the reference compound (4-chromanone or quercetin). The results of this study indicate that the incorporation of a pyrazoline ring into the 3-arylideneflavanone results in an improvement of the compounds' activity and therefore it may be of use in the search of new anticancer agents. Further analysis allowed us to demonstrate the compounds to have a strong inhibitory effect on the cell cycle. For instance, compounds 2, 10 induced 60% of HL-60 cells to be arrested in G2/M phase. Using a DNA-cleavage protection assay we also demonstrated that tested compounds interact with DNA. All compounds at the concentrations corresponding to cytotoxic properties are not toxic towards red blood cells, and do not contribute to hemolysis of RBCs.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.C.); (K.K.-G.)
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.C.); (K.K.-G.)
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joachim Kusz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland;
| | - Magdalena Małecka
- Department of Physical Chemistry, Theoretical and Structural Chemistry Group, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland;
| | - Elzbieta Budzisz
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
5
|
Poursheikhani A, Yousefi H, Tavakoli-Bazzaz J, Seyed H G. EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells. IRANIAN BIOMEDICAL JOURNAL 2020; 24:370-8. [PMID: 32660222 PMCID: PMC7601546 DOI: 10.29252/ibj.24.6.365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: EOC is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of EGFR with resistance to cytotoxic chemotherapies, hormone therapy, and radiotherapy in the cancers. These studies have highlighted the role of EGFR as an attractive therapeutic target in cisplatin-resistant EOC cells. Methods: The human ovarian cell lines (SKOV3 and OVCAR3) were cultured according to ATCC recommendations. The MTT assay was used to determine the chemosensitivity of the cell lines in exposure to cisplatin and erlotinib. The qRT-PCR was applied to analyze the mRNA expression of the desired genes. Results: Erlotinib in combination with cisplatin reduced the cell proliferation in the chemoresistant EOC cells in comparison to monotherapy of the drugs (p < 0.05). Moreover, erlotinib/cisplatin combination synergistically decreased the expression of anti-apoptotic and also increased pro-apoptotic genes expression (p < 0.05). Cisplatin alone could increase the expression of MDR genes. The data suggested that EGFR and cisplatin drive chemoresistance in the EOC cells through MEKK signal transduction as well as through EGFR/MEKK pathways in the cells, respectively. Conclusion: Our findings propose that EGFR is an attractive therapeutic target in chemoresistant EOC to be exploited in translational oncology, and erlotinib/cisplatin combination treatment is a potential anti-cancer approach to overcome chemoresistance and inhibit the proliferation of the EOC cells.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Louisiana State University, School of Medicine, New Orleans, USA
| | - Javad Tavakoli-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghaffari Seyed H
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Bryant J, Batis N, Franke AC, Clancey G, Hartley M, Ryan G, Brooks J, Southam AD, Barnes N, Parish J, Roberts S, Khanim F, Spruce R, Mehanna H. Repurposed quinacrine synergizes with cisplatin, reducing the effective dose required for treatment of head and neck squamous cell carcinoma. Oncotarget 2019; 10:5229-5244. [PMID: 31497252 PMCID: PMC6718257 DOI: 10.18632/oncotarget.27156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/17/2019] [Indexed: 12/03/2022] Open
Abstract
Despite highly toxic treatments, head and neck squamous cell carcinoma (HNSCC) have poor outcomes. There is an unmet need for more effective, less toxic therapies. Repurposing of clinically-approved drugs, with known safety profiles, may provide a time- and cost-effective approach to address this need. We have developed the AcceleraTED platform to repurpose drugs for HNSCC treatment; using in vitro assays (cell viability, clonogenic survival, apoptosis) and in vivo models (xenograft tumors in NOD/SCID/gamma mice). Screening a library of clinically-approved drugs identified the anti-malarial agent quinacrine as a candidate, which significantly reduced viability in a concentration dependent manner in five HNSCC cell lines (IC50 0.63–1.85 μM) and in six primary HNSCC samples (IC50 ~2 μM). Decreased clonogenic survival, increased apoptosis and accumulation of LC3-II (indicating altered autophagy) were also observed. Effects were additional to those resulting from standard treatments (cisplatin +/– irradiation) alone. In vivo, daily treatment with 100 mg/kg oral quinacrine plus cisplatin significantly inhibited tumor outgrowth, extending median time to reach maximum tumor volume from 20 to 32 days (p
< 0.0001) versus control, and from 28 to 32 days versus 2 mg/kg cisplatin alone. Importantly, combination therapy enabled the dose of cisplatin to be halved to 1 mg/kg, whilst maintaining the same impairment of tumor growth. Treatment was well tolerated; murine plasma levels reached a steady concentration of 0.5 μg/mL, comparable to levels achievable and tolerated in humans. Consequently, due to its favorable toxicity profile and proven safety, quinacrine may be particularly useful in reducing cisplatin dose, especially in frail and older patients; warranting a clinical trial.
Collapse
Affiliation(s)
- Jennifer Bryant
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,Joint first authors
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,Joint first authors
| | - Anna Clara Franke
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Gabriella Clancey
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Margaret Hartley
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Gordon Ryan
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Birmingham, UK.,Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Nicholas Barnes
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanna Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Farhat Khanim
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Spruce
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,Joint senior authors
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Joint senior authors
| |
Collapse
|
7
|
Qi X, Yu XJ, Wang XM, Song TN, Zhang J, Guo XZ, Li GJ, Shao M. Knockdown of KCNQ1OT1 Suppresses Cell Invasion and Sensitizes Osteosarcoma Cells to CDDP by Upregulating DNMT1-Mediated Kcnq1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:804-818. [PMID: 31454677 PMCID: PMC6716066 DOI: 10.1016/j.omtn.2019.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is a malignant bone tumor, with a high incidence worldwide. The involvement of long non-coding RNAs (lncRNAs) in cancers and their molecular association with the progression of osteosarcoma have been previously discussed. We conducted the present study to examine the effect of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) on osteosarcoma cell invasion and chemosensitivity to cisplatin (CDDP). After determination of the expression of Kcnq1 in osteosarcoma tissues and cells, the plasmids with overexpression or knockdown KCNQ1OT1 were introduced into the cells to aid the identification of cell proliferation, migration, invasion, chemosensitivity to CDDP, and apoptosis. Then, the interaction between KCNQ1OT1 and the Kcnq1/DNA methyltransferase 1 (DNMT1) axis was evaluated by measuring the level of Kcnq1 promoter region methylation and DNMT1 enrichment of the Kcnq1 promoter region. Low Kcnq1 expression and high KCNQ1OT1 expression were shown in osteosarcoma tissues and cells. Kcnq1 was negatively mediated by KCNQ1OT1 via DNMT1. The overexpression of Kcnq1 or knockdown of KCNQ1OT1 inhibited the proliferation, migration, and invasion, and it promoted the chemosensitivity to CDDP and apoptosis of MG-63 cells and its CDDP-resistant cell lines. Moreover, the same trend was observed in the cells following methylation inhibitor treatment. Collectively, knockdown of KCNQ1OT1 can inhibit the osteosarcoma progression through the Kcnq1/DNMT1 axis.
Collapse
Affiliation(s)
- Xu Qi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xiao-Jun Yu
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xu-Ming Wang
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Tie-Nan Song
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jie Zhang
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xin-Zhen Guo
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Guo-Jun Li
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ming Shao
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China.
| |
Collapse
|
8
|
Velma V, Dasari SR, Tchounwou PB. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights 2016; 11:113-21. [PMID: 27594783 PMCID: PMC4998075 DOI: 10.4137/bmi.s39445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Venkatramreddy Velma
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Shaloam R Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| |
Collapse
|