Dobrynina LA, Kremneva EI, Shamtieva KV, Geints AA, Filatov AS, Trubitsyna VV, Bitsieva ET, Byrochkina AA, Akhmetshina YI, Maksimov II, Krotenkova MV. [Disruption of corpus callosum microstructural integrity by diffusion MRI as a predictor of progression of cerebral microangiopathy].
Zh Nevrol Psikhiatr Im S S Korsakova 2023;
123:95-104. [PMID:
37994894 DOI:
10.17116/jnevro202312311195]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
OBJECTIVE
To assess the microstructural integrity of the corpus callosum in patients with cerebral small vessel disease (cSVD) using signal and biophysical diffusion MRI models and to identify the most sensitive markers of disease progression.
MATERIAL AND METHODS
Diffusion MRI (3 Tesla) was performed in 166 patients (51.8% women; mean age 60.4±7.6) with cSVD and cognitive impairment of varying severity and in 44 healthy volunteers (65.9% women; mean age 59.6±6.8), followed by calculation of signal (diffusion tensor and diffusion kurtosis) and biophysical (WMTI, NODDI, MC-SMT) models, from which profiles of three corpus callosum segments were constructed.
RESULTS
The best results were obtained for metrics in the forceps minor and body of the corpus callosum. Among the metrics of the signal models in the forceps minor, fraction anisotropy (FA) and mean diffusion (MD), which characterize the overall loss of microstructural integrity and increase in extra-axonal water, as well as indirect markers of demyelination when considering transverse diffusion parameters (radial diffusion and radial kurtosis), had the larger area under the curve according to the ROC analysis. Among the metrics of the biophysical models in the forceps minor, a larger area under the curve was found in the MC-SMT model for extra-axonal transverse diffusion (ETR), mean diffusion (EMD), and intra-axonal water fraction (INTRA), and in the WMTI model for intra-axonal water fraction (AWF). ETR had high inverse correlations with INTRA and AWF, while INTRA and AWF had high direct intercorrelations.
CONCLUSION
Metrics of signaling (FA, MD, RD, RK) and biophysical patterns (ETR, EMD, INTRA, AWF) in the forceps minor and the corpus callosum body can be considered as indicators of cSVD progression. They indicate disease progression, mainly by an increase in extra-axonal water with the development of demyelination and tissue degeneration in the corpus callosum.
Collapse