1
|
Zhang Y, Hao S, Zuo J, Guo H, Liu M, Zhu H, Sun H. NIR-Activated Thermosensitive Liposome-Gold Nanorod Hybrids for Enhanced Drug Delivery and Stimulus Sensitivity. ACS Biomater Sci Eng 2023; 9:340-351. [PMID: 36533725 DOI: 10.1021/acsbiomaterials.2c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinatorial photothermal therapy and chemotherapy is an extremely promising tumor therapeutic modality. However, such systems still remain challenges in stimulus sensitivity, avoiding drug leakage, and therapeutic safety. To solve these problems, we engineered actively loaded doxorubicin (DOX) and gold nanorod (GNR) liposomes through embedding stiff hollow mesoporous silica nanoparticles (HMSNs) in the liposomal water cavity (HMLGDB) to resist the influence of shear force of GNRs to prevent drug leakage. Under 808 nm laser irradiation, the ambient temperature was raised greatly because of the photothermal conversion of GNRs, thereby rupturing the lipid layer and then triggering the DOX release. The results of in vitro experiments showed that the low concentration of HMLGDB (15 μg/mL) could effectively overcome the MCF-7 cells (human breast cancer cell line) by the increase of DOX concentration intracellularly and the good photothermal effect of GNRs. After intravenous injection, HMLGDB exhibited intratumor aggregation and PTT capacity. Furthermore, the combined chemo-photothermal antitumor strategy demonstrated a high inhibition of tumor growth and low damage to normal tissues. The developed hybrids provide a paradigm for efficient combinatorial photothermal therapy (PTT) and chemotherapy (CT).
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| | - Siyuan Hao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| | - Jingjie Zuo
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| | - Huiling Guo
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| | - Mingxing Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| | - Hongda Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| | - Hongmei Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan430068, China
| |
Collapse
|
2
|
Fedin AI. [Arterial hypertension and cognitive impairment. Neurologist's view]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:7-13. [PMID: 37994882 DOI: 10.17116/jnevro20231231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The article presents a review of the literature on the relationship of cognitive impairment (CI) with arterial hypertension (AH). The pathogenetic mechanisms AH are characterized by the development of cerebral microangiopathy. Antihypertensive therapy (AHT) should take into account violations of autoregulation of cerebral blood flow in cerebrovascular disease and critical stenoses of large cerebral arteries, especially in fragile patients older than 80 years. The importance of AHT focused on the level of cerebral perfusion blood pressure, the severity of CI and the physical functioning of patients is emphasized. Neurocytoprotective therapy is recommended for correction of CI.
Collapse
Affiliation(s)
- A I Fedin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Fedin AI. [The glymphatic system in the brain - neurobiology and clinical pathology]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:13-19. [PMID: 37315237 DOI: 10.17116/jnevro202312305113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Given new information about the neurobiology of the processes of removal of waste products of the brain, consisting of the lymphatic vessels into the dura and the glial-lymphatic (glymphatic) system. The role of astrocytes and water-conducting channels located on them in cell membranes formed by the protein aquaporin-4 is emphasized. The connection between the functioning of the glymphatic system and the slow phase of sleep is discussed. Possible mechanisms for the development of cognitive impairments in violation of the function of the glymphatic system and a delay in the elimination of β-amyloid are shown. Directions of pathogenetic therapy are given.
Collapse
Affiliation(s)
- A I Fedin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Fedin A. Neurological disorders in the postcovid period. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:31-37. [DOI: 10.17116/jnevro202212210131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Saverskaya EN. [Of neurological disorders in extreme conditions and emergency situations]. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:57-62. [PMID: 36537632 DOI: 10.17116/jnevro202212212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The review examines the features of neurological disorders that develop in a contingent of people staying in war zones, extreme conditions and emergency situations. The structure of combat injuries is currently dominated by shrapnel and mine-explosive head injuries, craniocerebral trauma, compression and concussion of the brain. Traumatic wounds and features of military service in conditions of high risk and extreme physical exertion are accompanied by asthenia, cognitive disorders and mental disorders of varying severity. Substantiated is the use of Cortexin in craniocerebral and combined combat injuries received by military personnel and civilians in the centers of hostilities; with asthenic and anxiety-depressive disorders, cognitive impairment, sleep disorders, as well as to increase the body's resistance to adverse and extreme effects.
Collapse
Affiliation(s)
- E N Saverskaya
- Medical Institute of Continuing Education - Russian Biotechnological University, Moscow, Russia
| |
Collapse
|
6
|
Voronina T, Kraineva V, Zolotov N, Kotel’nikova S, Val’dman E. The role of oxidative stress in hemorrhagic stroke and restorative effects of Mexidol. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:65-71. [DOI: 10.17116/jnevro202212208265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|