1
|
Chekhonin IV, Cohen O, Otazo R, Young RJ, Holodny AI, Pronin IN. Magnetic resonance relaxometry in quantitative imaging of brain gliomas: A literature review. Neuroradiol J 2024; 37:267-275. [PMID: 37133228 PMCID: PMC11138331 DOI: 10.1177/19714009231173100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Magnetic resonance (MR) relaxometry is a quantitative imaging method that measures tissue relaxation properties. This review discusses the state of the art of clinical proton MR relaxometry for glial brain tumors. Current MR relaxometry technology also includes MR fingerprinting and synthetic MRI, which solve the inefficiencies and challenges of earlier techniques. Despite mixed results regarding its capability for brain tumor differential diagnosis, there is growing evidence that MR relaxometry can differentiate between gliomas and metastases and between glioma grades. Studies of the peritumoral zones have demonstrated their heterogeneity and possible directions of tumor infiltration. In addition, relaxometry offers T2* mapping that can define areas of tissue hypoxia not discriminated by perfusion assessment. Studies of tumor therapy response have demonstrated an association between survival and progression terms and dynamics of native and contrast-enhanced tumor relaxometric profiles. In conclusion, MR relaxometry is a promising technique for glial tumor diagnosis, particularly in association with neuropathological studies and other imaging techniques.
Collapse
Affiliation(s)
- Ivan V Chekhonin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
- Federal State Budgetary Institution V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Ouri Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, USA
| | - Igor N Pronin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
2
|
Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryaynov SA, Bykanov AE, Tyurina AN, Galstyan SA, Nikitin PV, Fadeeva LM, Usachev DY, Pronin IN. Perifocal Zone of Brain Gliomas: Application of Diffusion Kurtosis and Perfusion MRI Values for Tumor Invasion Border Determination. Cancers (Basel) 2023; 15:2760. [PMID: 37345097 DOI: 10.3390/cancers15102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Purpose: To determine the borders of malignant gliomas with diffusion kurtosis and perfusion MRI biomarkers. (2) Methods: In 50 high-grade glioma patients, diffusion kurtosis and pseudo-continuous arterial spin labeling (pCASL) cerebral blood flow (CBF) values were determined in contrast-enhancing area, in perifocal infiltrative edema zone, in the normal-appearing peritumoral white matter of the affected cerebral hemisphere, and in the unaffected contralateral hemisphere. Neuronavigation-guided biopsy was performed from all affected hemisphere regions. (3) Results: We showed significant differences between the DKI values in normal-appearing peritumoral white matter and unaffected contralateral hemisphere white matter. We also established significant (p < 0.05) correlations of DKI with Ki-67 labeling index and Bcl-2 expression activity in highly perfused enhancing tumor core and in perifocal infiltrative edema zone. CBF correlated with Ki-67 LI in highly perfused enhancing tumor core. One hundred percent of perifocal infiltrative edema tissue samples contained tumor cells. All glioblastoma samples expressed CD133. In the glioblastoma group, several normal-appearing white matter specimens were infiltrated by tumor cells and expressed CD133. (4) Conclusions: DKI parameters reveal changes in brain microstructure invisible on conventional MRI, e.g., possible infiltration of normal-appearing peritumoral white matter by glioma cells. Our results may be useful for plotting individual tumor invasion maps for brain glioma surgery or radiotherapy planning.
Collapse
Affiliation(s)
- Natalia E Zakharova
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Artem I Batalov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Eduard L Pogosbekian
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Ivan V Chekhonin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Sergey A Goryaynov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Andrey E Bykanov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Anastasia N Tyurina
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Suzanna A Galstyan
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Pavel V Nikitin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Lyudmila M Fadeeva
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Dmitry Yu Usachev
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Igor N Pronin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| |
Collapse
|
3
|
Zhu Z, Gong G, Wang L, Su Y, Lu J, Yin Y. Three-dimensional arterial spin labeling-guided dose painting radiotherapy for non-enhancing low-grade gliomas. Jpn J Radiol 2023; 41:335-346. [PMID: 36342645 PMCID: PMC9974719 DOI: 10.1007/s11604-022-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate the feasibility and dosimetric characteristics of dose painting for non-enhancing low-grade gliomas (NE-LGGs) guided by three-dimensional arterial spin labeling (3D-ASL). MATERIALS AND METHODS Eighteen patients with NE-LGGs were enrolled. 3D-ASL, T2 fluid-attenuated inversion recovery (T2 Flair) and contrast-enhanced T1-weighted magnetic resonance images were obtained. The gross tumor volume (GTV) was delineated on the T2 Flair. The hyper-perfusion region of the GTV (GTV-ASL) was determined by 3D-ASL, and the GTV-SUB was obtained by subtracting the GTV-ASL from the GTV. The clinical target volume (CTV) was created by iso-tropically expanding the GTV by 1 cm. The planning target volume (PTV), PTV-ASL were obtained by expanding the external margins of the CTV, GTV-ASL, respectively. PTV-SUB was generated by subtracting PTV-ASL from PTV. Three plans were generated for each patient: a conventional plan (plan 1) without dose escalation delivering 95-110% of 45-60 Gy in 1.8-2 Gy fractions to the PTV and two dose-painting plans (plan 2 and plan 3) with dose escalating by 10-20% (range, 50-72 Gy) to the PTV-ASL based on plan 1. The plan 3 was obtained from plan 2 without the maximum dose constraint. The dosimetric differences among the three plans were compared. RESULTS The volume ratio of the PTV-ASL to the PTV was (23.49 ± 11.94)% (Z = - 3.724, P = 0.000). Compared with plan 1, D2%, D98% and Dmean of PTV-ASL increased by 14.67%,16.17% and 14.31% in plan2 and 19.84%,15.52% and 14.27% in plan3, respectively (P < 0.05); the D2% of the PTV and PTV-SUB increased by 11.89% and 8.34% in plan 2, 15.89% and 8.49% in plan 3, respectively (P < 0.05). The PTV coverages were comparable among the three plans (P > 0.05). In plan 2 and plan 3, the conformity indexes decreased by 18.60% and 12.79%; while the homogeneity index increased by 1.43 and 2 times (P < 0.05). Compared with plan 1, the D0.1 cc of brain stem and Dmax of optic chiasma were slightly increased in plan 2 and plan 3, and the absolute doses met the dose constraint. The doses of the other organs at risk (OARs) were similar among the three plans (P > 0.05). CONCLUSION The dose delivered to hyper-perfusion volume derived from 3D-ASL can increased by 10-20% while respecting the constraints to the OARs for NE-LGGs, which provides a basis for future individualized and precise radiotherapy, especially if the contrast agent cannot be injected or when contrast enhancement is uncertain.
Collapse
Affiliation(s)
- Zihong Zhu
- grid.488387.8Department of Oncology, Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Luzhou, 646000 Sichuan China ,grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Guanzhong Gong
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Lizhen Wang
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Ya Su
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Jie Lu
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117 Shandong China
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China. .,Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|