1
|
Kuhn M, Hassan R, González D, Myllys M, Hobloss Z, Degen GH, Humpf HU, Hengstler JG, Cramer B, Ghallab A. Role of albumin in the metabolism and excretion of ochratoxin A. Mycotoxin Res 2024; 40:433-445. [PMID: 38743341 DOI: 10.1007/s12550-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.
Collapse
Affiliation(s)
- Michael Kuhn
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Benedikt Cramer
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|
2
|
Hassan R, Hobloss Z, Myllys M, González D, Begher-Tibbe B, Reinders J, Friebel A, Hoehme S, Abdelmageed N, Abbas AA, Seddek AL, Morad SAF, Hengstler JG, Ghallab A. Acetaminophen overdose causes a breach of the blood-bile barrier in mice but not in rats. Arch Toxicol 2024; 98:1533-1542. [PMID: 38466352 DOI: 10.1007/s00204-024-03705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.
Collapse
Affiliation(s)
- Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Zaynab Hobloss
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Daniela González
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Brigitte Begher-Tibbe
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Joerg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Adrian Friebel
- Institute of Computer Science &, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Hoehme
- Institute of Computer Science &, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Aya A Abbas
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Abdel-Latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Samy A F Morad
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
3
|
Hassan R, Gerdemann A, Cramer B, Hobloss Z, Myllys M, González D, Albrecht W, Veerkamp J, Friebel A, Hoehme S, Esselen M, Degen GH, Humpf HU, Hengstler JG, Ghallab A. Integrated data from intravital imaging and HPLC-MS/MS analysis reveal large interspecies differences in AFB 1 metabolism in mice and rats. Arch Toxicol 2024; 98:1081-1093. [PMID: 38436695 DOI: 10.1007/s00204-024-03688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.
Collapse
Affiliation(s)
- Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Jannik Veerkamp
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Adrian Friebel
- Institute of Computer Science and Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Hoehme
- Institute of Computer Science and Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany.
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
4
|
Dichamp J, Cellière G, Ghallab A, Hassan R, Boissier N, Hofmann U, Reinders J, Sezgin S, Zühlke S, Hengstler JG, Drasdo D. In vitro to in vivo acetaminophen hepatotoxicity extrapolation using classical schemes, pharmacodynamic models and a multiscale spatial-temporal liver twin. Front Bioeng Biotechnol 2023; 11:1049564. [PMID: 36815881 PMCID: PMC9932319 DOI: 10.3389/fbioe.2023.1049564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro to in vivo extrapolation represents a critical challenge in toxicology. In this paper we explore extrapolation strategies for acetaminophen (APAP) based on mechanistic models, comparing classical (CL) homogeneous compartment pharmacodynamic (PD) models and a spatial-temporal (ST), multiscale digital twin model resolving liver microarchitecture at cellular resolution. The models integrate consensus detoxification reactions in each individual hepatocyte. We study the consequences of the two model types on the extrapolation and show in which cases these models perform better than the classical extrapolation strategy that is based either on the maximal drug concentration (Cmax) or the area under the pharmacokinetic curve (AUC) of the drug blood concentration. We find that an CL-model based on a well-mixed blood compartment is sufficient to correctly predict the in vivo toxicity from in vitro data. However, the ST-model that integrates more experimental information requires a change of at least one parameter to obtain the same prediction, indicating that spatial compartmentalization may indeed be an important factor.
Collapse
Affiliation(s)
- Jules Dichamp
- Group SIMBIOTX, INRIA Saclay-Île-de-France, Palaiseau, France,Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Group MAMBA, INRIA Paris, Paris, France
| | | | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Noemie Boissier
- Group SIMBIOTX, INRIA Saclay-Île-de-France, Palaiseau, France
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Joerg Reinders
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Selahaddin Sezgin
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| | - Sebastian Zühlke
- Center for Mass Spectrometry (CMS), Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Dirk Drasdo
- Group SIMBIOTX, INRIA Saclay-Île-de-France, Palaiseau, France,Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Group MAMBA, INRIA Paris, Paris, France,*Correspondence: Dirk Drasdo,
| |
Collapse
|
5
|
Hamdy A. The role of albumin in compound transport: new possibilities by intravital imaging. EXCLI JOURNAL 2022; 21:1352-1353. [PMID: 36540674 PMCID: PMC9755509 DOI: 10.17179/excli2022-5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Amira Hamdy
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,*To whom correspondence should be addressed: Amira Hamdy, Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, E-mail:
| |
Collapse
|
6
|
Hassan R, González D, Hobloss Z, Brackhagen L, Myllys M, Friebel A, Seddek AL, Marchan R, Cramer B, Humpf HU, Hoehme S, Degen GH, Hengstler JG, Ghallab A. Inhibition of cytochrome P450 enhances the nephro- and hepatotoxicity of ochratoxin A. Arch Toxicol 2022; 96:3349-3361. [PMID: 36227364 PMCID: PMC9584869 DOI: 10.1007/s00204-022-03395-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022]
Abstract
The mycotoxin ochratoxin A (OTA) is a contaminant in food that causes nephrotoxicity and to a minor degree hepatotoxicity. Recently, we observed that OTA induces liver damage preferentially to the cytochrome P450 (CYP)-expressing pericentral lobular zone, similar to hepatotoxic substances known to be metabolically toxified by CYP, such as acetaminophen or carbon tetrachloride. To investigate whether CYP influences OTA toxicity, we used a single dose of OTA (7.5 mg/kg; intravenous) with and without pre-treatment with the pan CYP-inhibitor 1-aminobenzotriazole (ABT) 2 h before OTA administration. Blood, urine, as well as liver and kidney tissue samples were collected 24 h after OTA administration for biochemical and histopathological analyses. Inhibition of CYPs by ABT strongly increased the nephro- and hepatotoxicity of OTA. The urinary kidney damage biomarkers kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were increased > 126-fold and > 20-fold, respectively, in mice treated with ABT and OTA compared to those receiving OTA alone. The blood biomarkers of liver damage, alanine transaminase (ALT) and aspartate transaminase (AST) both increased > 21- and 30-fold, respectively, when OTA was administered to ABT pre-treated mice compared to the effect of OTA alone. Histological analysis of the liver revealed a pericentral lobular damage induced by OTA despite CYP-inhibition by ABT. Administration of ABT alone caused no hepato- or nephrotoxicity. Overall, the results presented are compatible with a scenario where CYPs mediate the detoxification of OTA, yet the mechanisms responsible for the pericental liver damage pattern still remain to be elucidated.
Collapse
Affiliation(s)
- Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Adrian Friebel
- Institute of Computer Science and Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Abdel-Latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Stefan Hoehme
- Institute of Computer Science and Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany. .,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
7
|
Colchicine overdose impairs the capacity of Kupffer cells to clear foreign particles and endotoxins. Arch Toxicol 2022; 96:3067-3076. [PMID: 36102954 PMCID: PMC9525399 DOI: 10.1007/s00204-022-03353-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
AbstractColchicine is an anti-inflammatory drug with a narrow therapeutic index. Its binding to tubulin prevents microtubule polymerization; however, little is known about how depolymerization of microtubules interferes with the phagocytosis function of Kupffer cells (KC). Here, we applied functional intravital imaging techniques to investigate the influence of microtubule disruption by colchicine on KC morphology, as well as its capacity to clear foreign particles and bacterial lipopolysaccharide (LPS) in anesthetized mice. Intravital imaging of KC in healthy mice showed the typical elongated morphology, localization at the luminal side of the sinusoidal endothelial cells, and moving cell protrusions. In contrast, at colchicine doses of 1 mg/kg and higher (intraperitoneal), KC appeared roundish with strongly reduced protrusions and motility. To study the functional consequences of these alterations, we analyzed the capacity of KC to phagocytose fluorescent nanospheres (100 nm-size) and LPS. After tail vein injection, the nanospheres formed aggregates of up to ~ 5 µm moving along the sinusoidal bloodstream. In controls, the nanosphere aggregates were rapidly captured by the Kupffer cell protrusions, followed by an internalization process that lasted up to 10 min. Similar capture events and internalization processes were observed after the administration of fluorescently labeled LPS. In contrast, capture and internalization of both nanospheres and LPS by KC were strongly reduced in colchicine-treated mice. Reduced phagocytosis of LPS was accompanied by aggravated production of inflammatory cytokines. Since 0.4 mg/kg colchicine in mice has been reported to be bio-equivalent to human therapeutic doses, the here-observed adverse effects on KC occurred at doses only slightly above those used clinically, and may be critical for patients with endotoxemia due to a leaky gut–blood barrier.
Collapse
|
8
|
Hypoalbuminemia affects the spatio-temporal tissue distribution of ochratoxin A in liver and kidneys: consequences for organ toxicity. Arch Toxicol 2022; 96:2967-2981. [PMID: 35962801 PMCID: PMC9525345 DOI: 10.1007/s00204-022-03361-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
Hypoalbuminemia (HA) is frequently observed in systemic inflammatory diseases and in liver disease. However, the influence of HA on the pharmacokinetics and toxicity of compounds with high plasma albumin binding remained insufficiently studied. The ‘lack-of-delivery-concept’ postulates that HA leads to less carrier mediated uptake of albumin bound substances into hepatocytes and to less glomerular filtration; in contrast, the ‘concept-of-higher-free-fraction’ argues that increased concentrations of non-albumin bound compounds facilitate hepatocellular uptake and enhance glomerular filtration. To address this question, we performed intravital imaging on livers and kidneys of anesthetized mice to quantify the spatio-temporal tissue distribution of the mycotoxin ochratoxin A (OTA) based on its auto-fluorescence in albumin knockout and wild-type mice. HA strongly enhanced the uptake of OTA from the sinusoidal blood into hepatocytes, followed by faster secretion into bile canaliculi. These toxicokinetic changes were associated with increased hepatotoxicity in heterozygous albumin knockout mice for which serum albumin was reduced to a similar extent as in patients with severe hypoalbuminemia. HA also led to a shorter half-life of OTA in renal capillaries, increased glomerular filtration, and to enhanced uptake of OTA into tubular epithelial cells. In conclusion, the results favor the ‘concept-of-higher-free-fraction’ in HA; accordingly, HA causes an increased tissue uptake of compounds with high albumin binding and increased organ toxicity. It should be studied if this concept can be generalized to all compounds with high plasma albumin binding that are substrates of hepatocyte and renal tubular epithelial cell carriers.
Collapse
|
9
|
Abbas AA, Hamdy A, Ahmed AE. Compromised blood-bile barrier after acetaminophen overdose. Arch Toxicol 2022; 96:2825-2827. [PMID: 35849165 DOI: 10.1007/s00204-022-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
N-acetylcysteine (NAC) is the only approved drug for the treatment of acetaminophen (APAP) intoxication. A limitation of NAC is the short therapeutic time-window as it is only effective within approximately eight hours after APAP ingestion, which is critical since patients seek medical attention often after the onset of symptoms approximately 24 h after overdose. Recently, a so far unknown mechanism was identified by which APAP causes an increase of intracellular bile acid concentrations in hepatocytes to concentrations that exceed cytotoxic thresholds. APAP compromises the tight junctions of bile canaliculi that leads to the leakage of highly concentrated bile acids into the sinusoids. From the sinusoidal blood, a high fraction of the released bile acids is transported back into hepatocytes by basolateral uptake carriers and secreted into bile canaliculi. Repeated leakage from the canaliculi followed by hepatocellular reuptake and canalicular secretion causes an increase of intracellular bile acid concentrations and finally hepatocyte death. Importantly, inhibition of bile acid uptake carriers reduced intracellular bile acid concentrations and strongly ameliorated APAP hepatotoxicity, a finding that could result in a new therapeutic option for APAP-intoxicated patients.
Collapse
Affiliation(s)
- Aya A Abbas
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amira Hamdy
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Asir, Saudi Arabia.
| |
Collapse
|
10
|
Seidel F. Highlight report: Toxicogenomics atlas of rat hepatotoxicants. EXCLI JOURNAL 2019; 17:1196-1197. [PMID: 30713482 PMCID: PMC6341424 DOI: 10.17179/excli2018-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Seidel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund
| |
Collapse
|
11
|
Albrecht W. Highlight report: General determinants of steatosis. EXCLI JOURNAL 2019; 17:1194-1195. [PMID: 30713481 PMCID: PMC6341447 DOI: 10.17179/excli2018-2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Wiebke Albrecht
- IfADo - Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Ardeystr. 67, D-44139 Dortmund, Germany
| |
Collapse
|
12
|
Ghallab A. Highlight report: Necrosis-apoptosis conundrum of hepatocytes: mode of hepatocyte death after acetaminophen intoxication. EXCLI JOURNAL 2018; 17:1191-1193. [PMID: 30713480 PMCID: PMC6341448 DOI: 10.17179/excli2018-2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
Affiliation(s)
- Ahmed Ghallab
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,*To whom correspondence should be addressed: Ahmed Ghallab, Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, E-mail:
| |
Collapse
|
13
|
Ghallab A. Highlight report: Metabolomics in hepatotoxicity testing. EXCLI JOURNAL 2017; 16:1323-1325. [PMID: 29333135 PMCID: PMC5763079 DOI: 10.17179/excli2017-1041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmed Ghallab
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|