1
|
Tangporncharoen R, Phanus-Umporn C, Prachayasittikul S, Nantasenamat C, Prachayasittikul V, Supokawej A. Computer-guided design of novel nitrogen-based heterocyclic sphingosine-1-phosphate (S1P) activators as osteoanabolic agents. EXCLI JOURNAL 2024; 23:818-832. [PMID: 39574964 PMCID: PMC11579520 DOI: 10.17179/excli2024-7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 11/24/2024]
Abstract
Osteoanabolic agents, or drugs that promote bone formation, have gained considerable attention for osteoporosis management due to their curative and preventive potentials. Sphingosine-1-phosphate receptor 2 (S1PR2) is an attractive drug target, in which its activation leads to osteogenesis-promoting effect. Nitrogen-containing heterocyclic scaffolds (i.e., quinoxaline and indole) are promising pharmacophores possessing diverse bioactivities and were reported as S1PR2 activators. Quantitative structure-activity relationship (QSAR) modeling is a computational approach well-known as a fundamental tool for facilitating successful drug development. This study demonstrates the discovery of new S1PR2 activators using computational-driven rational design. Herein, an original dataset of nitrogen-containing S1PR2 activators was collected from ChEMBL database. The retrieved dataset was separated into two datasets according to their core scaffolds (i.e., quinoxaline and indole). QSAR modeling was performed using multiple linear regression (MLR) algorithm to successfully obtain two models with good predictive performance. The constructed models also revealed key properties playing essential roles for potent S1PR2 activation, such as Van der Waals volume (R2v+ and E3v), mass (MATS5m and Km), electronegativity (H3e), and number of 5-membered rings (nR05). Subsequently, the constructed models were further employed to guide rational design and predict S1PR2 activating effects of an additional set of 752 structurally modified compounds. Most of the modified compounds were predicted to have higher potency than their parents, and a set of promising potent newly designed compounds was highlighted. Additionally, drug-likeness prediction was performed to reveal that most of the newly designed compounds are druggable compounds with possibility for further development.
Collapse
Affiliation(s)
- Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chuleeporn Phanus-Umporn
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Pingaew R, Mandi P, Prachayasittikul V, Thongnum A, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Investigations on Anticancer and Antimalarial Activities of Indole-Sulfonamide Derivatives and In Silico Studies. ACS OMEGA 2021; 6:31854-31868. [PMID: 34870008 PMCID: PMC8638007 DOI: 10.1021/acsomega.1c04552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
A library of 44 indole-sulfonamide derivatives (1-44) were investigated for their cytotoxic activities against four cancer cell lines (i.e., HuCCA-1, HepG2, A549, and MOLT-3) and antimalarial effect. Most of the studied indoles exhibit anticancer activity against the MOLT-3 cell line, whereas only hydroxyl-containing bisindoles displayed anticancer activities against the other tested cancer cells as well as antimalarial effect. The most promising anticancer compounds were noted to be CF3, Cl, and NO2 derivatives of hydroxyl-bearing bisindoles (30, 31, and 36), while the most promising antimalarial compound was an OCH3 derivative of non-hydroxyl-containing bisindole 11. Five quantitative structure-activity relationship (QSAR) models were successfully constructed, providing acceptable predictive performance (training set: R = 0.6186-0.9488, RMSE = 0.0938-0.2432; validation set: R = 0.4242-0.9252, RMSE = 0.1100-0.2785). QSAR modeling revealed that mass, charge, polarizability, van der Waals volume, and electronegativity are key properties governing activities of the compounds. QSAR models were further applied to guide the rational design of an additional set of 22 compounds (P1-P22) in which their activities were predicted. The prediction revealed a set of promising virtually constructed compounds (P1, P3, P9, P10, and P16) for further synthesis and development as anticancer and antimalarial agents. Molecular docking was also performed to reveal possible modes of bindings and interactions between the studied compounds and target proteins. Taken together, insightful structure-activity relationship information obtained herein would be beneficial for future screening, design, and structural optimization of the related compounds.
Collapse
Affiliation(s)
- Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
- . Tel.: +66-2-649-5000 ext 18253. Fax: 662-260-0128
| | - Prasit Mandi
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- . Tel.: +66-2-441-4376
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, and Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center of
Excellence on Environmental Health and Toxicology (EHT), Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Polonik S, Likhatskaya G, Sabutski Y, Pelageev D, Denisenko V, Pislyagin E, Chingizova E, Menchinskaya E, Aminin D. Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-Activity Analysis of Substituted 5,8-Dihydroxy-1,4-Naphthoquinones and their O- and S-Glycoside Derivatives Tested Against Neuro-2a Cancer Cells. Mar Drugs 2020; 18:E602. [PMID: 33260299 PMCID: PMC7761386 DOI: 10.3390/md18120602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Based on 6,7-substituted 2,5,8-trihydroxy-1,4-naphtoquinones (1,4-NQs) derived from sea urchins, five new acetyl-O-glucosides of NQs were prepared. A new method of conjugation of per-O-acetylated 1-mercaptosaccharides with 2-hydroxy-1,4-NQs through a methylene spacer was developed. Methylation of 2-hydroxy group of quinone core of acetylthiomethylglycosides by diazomethane and deacetylation of sugar moiety led to 28 new thiomethylglycosidesof 2-hydroxy- and 2-methoxy-1,4-NQs. The cytotoxic activity of starting 1,4-NQs (13 compounds) and their O- and S-glycoside derivatives (37 compounds) was determined by the MTT method against Neuro-2a mouse neuroblastoma cells. Cytotoxic compounds with EC50 = 2.7-87.0 μM and nontoxic compounds with EC50 > 100 μM were found. Acetylated O- and S-glycosides 1,4-NQs were the most potent, with EC50 = 2.7-16.4 μM. Methylation of the 2-OH group innaphthoquinone core led to a sharp increase in the cytotoxic activity of acetylated thioglycosidesof NQs, which was partially retained for their deacetylated derivatives. Thiomethylglycosides of 2-hydroxy-1,4-NQs with OH and MeO groups in quinone core at positions 6 and 7, resprectively formed a nontoxic set of compounds with EC50 > 100 μM. A quantitative structure-activity relationship (QSAR) model of cytotoxic activity of 22 1,4-NQ derivatives was constructed and tested. Descriptors related to the cytotoxic activity of new 1,4-NQ derivatives were determined. The QSAR model is good at predicting the activity of 1,4-NQ derivatives which are unused for QSAR models and nontoxic derivatives.
Collapse
Affiliation(s)
- Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Dmitry Pelageev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
- School of Natural Sciences, Far Eastern Federal University, Sukhanova St. 8, 690091 Vladivostok, Russia
| | - Vladimir Denisenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Phanus-Umporn C, Prachayasittikul V, Nantasenamat C, Prachayasittikul S, Prachayasittikul V. QSAR-driven rational design of novel DNA methyltransferase 1 inhibitors. EXCLI JOURNAL 2020; 19:458-475. [PMID: 32398970 PMCID: PMC7214779 DOI: 10.17179/excli2020-1096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 01/30/2023]
Abstract
DNA methylation, an epigenetic modification, is mediated by DNA methyltransferases (DNMTs), a family of enzymes. Inhibitions of these enzymes are considered a promising strategy for the treatment of several diseases. In this study, a quantitative structure-activity relationship (QSAR) modeling was employed to understand the structure-activity relationship (SAR) of currently available non-nucleoside DNMT1 inhibitors (i.e., indole and oxazoline/1,2-oxazole scaffolds). Two QSAR models were successfully constructed using multiple linear regression (MLR) and provided good predictive performance (R2Tr = 0.850-0.988 and R2CV = 0.672-0.869). Bond information content index (BIC1) and electronegativity (R6e+) are the most influential descriptors governing the activity of compounds. The constructed QSAR models were further applied for guiding a rational design of novel inhibitors. A novel set of 153 structurally modified compounds were designed in silico according to the important descriptors deduced from the QSAR finding, and their DNMT1 inhibitory activities were predicted. This result demonstrated that 86 newly designed inhibitors were predicted to elicit enhanced DNMT1 inhibitory activity when compared to their parent compounds. Finally, a set of promising compounds as potent DNMT1 inhibitors were highlighted to be further developed. The key SAR findings may also be beneficial for structural optimization to improve properties of the known inhibitors.
Collapse
Affiliation(s)
- Chuleeporn Phanus-Umporn
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
5
|
Synthesis, Docking Studies and Biological Activity of New Benzimidazole- Triazolothiadiazine Derivatives as Aromatase Inhibitor. Molecules 2020; 25:molecules25071642. [PMID: 32252458 PMCID: PMC7180718 DOI: 10.3390/molecules25071642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023] Open
Abstract
In the last step of estrogen biosynthesis, aromatase enzyme catalyzes the conversion of androgens to estrogens. Aromatase inhibition is an important way to control estrogen-related diseases and estrogen levels. In this study, sixteen of benzimidazole-triazolothiadiazine derivatives have been synthesized and studied as potent aromatase inhibitors. First, these compounds were tested for their anti-cancer properties against human breast cancer cell line (MCF-7). The most active compounds 5c, 5e, 5k, and 5m on MCF-7 cell line were subject to further in vitro aromatase enzyme inhibition assays to determine the possible mechanisms of action underlying their activity. Compound 5e showed slight less potent aromatase inhibitory activity than that of letrozole with IC50 = 0.032 ± 0.042 µM, compared to IC50 = 0.024 ± 0.001 µM for letrozole. Furthermore, compound 5e and reference drug letrozole were docked into human placental aromatase enzyme to predict their possible binding modes with the enzyme. Finally, ADME parameters (absorption, distribution, metabolism, and excretion) of synthesized compounds (5a–5p) were calculated by QikProp 4.8 software.
Collapse
|
6
|
Worachartcheewan A, Prachayasittikul V, Prachayasittikul S, Tantivit V, Yeeyahya C, Prachayasittikul V. Rational design of novel coumarins: A potential trend for antioxidants in cosmetics. EXCLI JOURNAL 2020; 19:209-226. [PMID: 32256267 PMCID: PMC7105943 DOI: 10.17179/excli2019-1903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Coumarins are well-known for their antioxidant effect and aromatic property, thus, they are one of ingredients commonly added in cosmetics and personal care products. Quantitative structure-activity relationships (QSAR) modeling is an in silico method widely used to facilitate rational design and structural optimization of novel drugs. Herein, QSAR modeling was used to elucidate key properties governing antioxidant activity of a series of the reported coumarin-based antioxidant agents (1-28). Several types of descriptors (calculated from 4 softwares i.e., Gaussian 09, Dragon, PaDEL and Mold2 softwares) were used to generate three multiple linear regression (MLR) models with preferable predictive performance (Q 2 LOO-CV = 0.813-0.908; RMSE LOO-CV = 0.150-0.210; Q 2 Ext = 0.875-0.952; RMSE Ext = 0.104-0.166). QSAR analysis indicated that number of secondary amines (nArNHR), polarizability (G2p), electronegativity (D467, D580, SpMin2_Bhe, and MATS8e), van der Waals volume (D491 and D461), and H-bond potential (SHBint4) are important properties governing antioxidant activity. The constructed models were also applied to guide in silico rational design of an additional set of 69 structurally modified coumarins with improved antioxidant activity. Finally, a set of 9 promising newly design compounds were highlighted for further development. Structure-activity analysis also revealed key features required for potent activity which would be useful for guiding the future rational design. In overview, our findings demonstrated that QSAR modeling could possibly be a facilitating tool to enhance successful development of bioactive compounds for health and cosmetic applications.
Collapse
Affiliation(s)
- Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Visanu Tantivit
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chareef Yeeyahya
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
Gokmen Z, Onan ME, Deniz NG, Karakas D, Ulukaya E. Synthesis and investigation of cytotoxicity of new N- and S,S-substituted-1,4-naphthoquinone (1,4-NQ) derivatives on selected cancer lines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1655057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zeliha Gokmen
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Erdi Onan
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nahide Gulsah Deniz
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istinye University, Istanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medical School, Istinye University, Istanbul, Turkey
| |
Collapse
|
8
|
Pratiwi R, Prachayasittikul V, Prachayasittikul S, Nantasenamat C. Rational design of novel sirtuin 1 activators via structure-activity insights from application of QSAR modeling. EXCLI JOURNAL 2019; 18:207-222. [PMID: 31217784 PMCID: PMC6558509 DOI: 10.17179/excli2019-1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (SIRT1) enzyme regulates major cell activities, and its activation offers lucrative therapeutic potentials for aging diseases including Alzheimer's disease (AD). Regarding the global aging society, continual attention has been given to various chemical scaffolds as a source for the discovery of novel SIRT1 activators since the discovery of the pioneer activator, resveratrol. Understanding structure-activity relationship (SAR) is essential for screening, designing as well as improving the properties of drugs. In this study, an in silico approach based on quantitative structure-activity relationship (QSAR) modeling, was employed for understanding the SAR of currently available SIRT1 fused-aromatic activators (i.e., imidazothiazole, oxazolopyridine, and azabenzimidazole analogs). Three QSAR models constructed using multiple linear regression (MLR) provided good predictive performance (R 2 LOOCV = 0.729 - 0.863 and RMSE LOOCV = 0.165 - 0.325). An additional novel set of 181 structurally modified compounds were rationally designed according to key descriptors deduced from the QSAR findings and their SIRT1 activities were predicted using the constructed models. In overview, the study provides insightful SAR findings of currently available SIRT1 activators that would be useful for guiding the rational design, screening, and development of further potent SIRT1 activators for managing age-related clinical conditions. A series of promising compounds as well as important scaffolds and molecular properties for potent SIRT1 activator were highlighted. This study demonstrated the efficacious role of QSAR-driven structural modification for the rational design of novel leads.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Setia Budi University, Surakarta 57127, Indonesia
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
9
|
Badolato M, Carullo G, Caroleo MC, Cione E, Aiello F, Manetti F. Discovery of 1,4-Naphthoquinones as a New Class of Antiproliferative Agents Targeting GPR55. ACS Med Chem Lett 2019; 10:402-406. [PMID: 30996770 DOI: 10.1021/acsmedchemlett.8b00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
A new series of 1,4-naphthoquinones, bearing various cyclic and aliphatic amines on C2, was designed and synthesized to identify antiproliferative agents for triple-negative breast cancer, which represents a clinical challenge without targeted therapies. Among naphthoquinones, 2a and 3a inhibited the proliferation of MDA-MB-231 cells (EC50 = 1.6 and 2.7 μM, respectively), compared to primary human breast cells MCF10A. Furthermore, they did not affect the viability of peripheral blood mononuclear cells (PBMC), suggesting their potential safer use for cancer treatment. Recently, correlations have emerged between the expression of G protein-coupled receptor 55 (GPR55) and both triple-negative breast cancer development and invasion, making it a promising target for the development of targeted therapies. Based on this evidence, molecular docking studies supported the hypothesis of binding to GPR55, and pharmacological tests suggested that compound 3a could exert its antiproliferative activity acting as a GPR55 inverse agonist.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy − Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
10
|
Shoombuatong W, Schaduangrat N, Nantasenamat C. Towards understanding aromatase inhibitory activity via QSAR modeling. EXCLI JOURNAL 2018; 17:688-708. [PMID: 30190660 PMCID: PMC6123608 DOI: 10.17179/excli2018-1417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Aromatase is a rate-limiting enzyme for estrogen biosynthesis that is overproduced in breast cancer tissue. To block the growth of breast tumors, aromatase inhibitors (AIs) are employed to bind and inhibit aromatase in order to lower the amount of estrogen produced in the body. Although a number of synthetic aromatase inhibitors have been released for clinical use in the treatment of hormone-receptor positive breast cancer, these inhibitors may lead to undesirable side effects (e.g. increased rash, diarrhea and vomiting; effects on the bone, brain and heart) and therefore, the search for novel AIs continues. Over the past decades, there has been an intense effort in employing medicinal chemistry and quantitative structure-activity relationship (QSAR) to shed light on the mechanistic basis of aromatase inhibition. To the best of our knowledge, this article constitutes the first comprehensive review of all QSAR studies of both steroidal and non-steroidal AIs that have been published in the field. Herein, we summarize the experimental setup of these studies as well as summarizing the key features that are pertinent for robust aromatase inhibition.
Collapse
Affiliation(s)
- Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|