1
|
Du S, Wang J, Liu M, Liu R, Wang H, Zhang Y, Zhou F, Pei W. APOM Modulates the Glycolysis Process in Liver Cancer Cells by Controlling the Expression and Activity of HK2 via the Notch Pathway. Biochem Genet 2025:10.1007/s10528-024-11013-y. [PMID: 39754657 DOI: 10.1007/s10528-024-11013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process. The findings of this study demonstrated that the inhibition of APOM gene expression led to a notable increase in glucose uptake within liver cancer cells, along with increased levels of lactate dehydrogenase A (LDHA) mRNA and protein expression, as well as increased lactate and adenosine triphosphate (ATP) levels (P < 0.05). These alterations in the cellular microenvironment may be associated with a significant increase in the expression level and enzyme activity of the pivotal enzyme hexokinase 2 (HK2) (P < 0.05). Subsequent investigations revealed notable enrichment of the Notch pathway in liver cancer samples exhibiting low expression of the APOM gene. Western blot experiments demonstrated that the inhibition of APOM gene expression triggers the activation of the Notch pathway in liver cancer cells. Furthermore, the administration of a γ-secretase inhibitor (DAPT) successfully mitigated the increase in HK2 levels, glucose uptake, lactate production, and proliferation of liver cancer cells induced by the downregulation of the APOM gene (P < 0.05). In conclusion, diminished APOM expression may facilitate the progression of liver cancer by stimulating the aerobic glycolysis pathway, which is mediated by the Notch signaling pathway.
Collapse
Affiliation(s)
- Shuangqiu Du
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Jingtong Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
- School of Clinical Medicine, Wannan Medical Collage, Wuhu, 241002, Anhui, P. R. China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Rong Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Hui Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Fengcang Zhou
- Basic Teaching Department of Morphology Teaching and Research Section, Anhui College of Traditional Chinese Medicine, Wuhu, 241002, Anhui, P. R. China.
| | - Wenjun Pei
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.
| |
Collapse
|
2
|
Kuai X, Wei C, He X, Wang F, Wang C, Ji J. The Potential Value of RPS27A in Prognosis and Immunotherapy: From Pan-Cancer Analysis to Hepatocellular Carcinoma Validation. Immunotargets Ther 2024; 13:673-690. [PMID: 39670220 PMCID: PMC11636265 DOI: 10.2147/itt.s493217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose Elucidation of the potential value of ribosomal protein S27a (RPS27A) for prognosis and immunotherapy in pan-cancer analysis, and exploration of the oncogenic function of RPS27A on hepatocellular carcinoma (HCC) and macrophage polarization. Methods A systematic analysis of the function and mechanism of RPS27A was conducted with R software and multiple public platforms, including UALCAN, HPA, TISIDB, TIMER, cBioPortal, cancerSEA, TIDE, and TIMSO databases. The RPS27A expression in human and mouse liver was detected by immunohistochemistry. The biological behavior of HCC cells was detected in vitro after RPS27A overexpression. The influence of RPS27A on macrophage polarization was detected by the coculturing assay. Results RPS27A dysregulation was found in multiple cancer types, and RPS27A level was associated with clinicopathologic features and prognosis in human cancers. RPS27A affected cancer statuses and multiple signaling pathways, such as DNA repair, invasion, IL10 synthesis, and MAPK activation. RPS27A took part in regulations of genomic alterations and heterogeneity and was associated with tumor mutation burden, microsatellite instability, neoantigen and so on. RPS27A expression was connected to the immune subtypes, tumor purity and immune cell infiltration and participated in regulation of the immunotherapy response. RPS27A was upregulated in HCC tissues compared to normal liver tissues. RPS27A overexpression in HCC cells promoted the proliferation, migration, and invasion of cancer cells, and accelerated M2 polarization of macrophage. Conclusion RPS27A had the potential to be a biomarker for diagnosis, prognosis and immunotherapy response in pan-cancer, and targeting RPS27A may provide new ideas for cancer immunotherapy.
Collapse
Affiliation(s)
- Xingwang Kuai
- Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu, 226000, People’s Republic of China
| | - Chenyu Wei
- Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu, 226000, People’s Republic of China
| | - Xiaoqian He
- Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu, 226000, People’s Republic of China
| | - Fengli Wang
- Department of Oncology, the Sixth Affiliated Hospital of Nantong University, Yanchen, Jiangsu, 224001, People’s Republic of China
| | - Chunbin Wang
- Department of Oncology, the Sixth Affiliated Hospital of Nantong University, Yanchen, Jiangsu, 224001, People’s Republic of China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu, 226000, People’s Republic of China
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, People’s Republic of China
| |
Collapse
|
3
|
Muendlein A, Heinzle C, Brandtner EM, Leiherer A, Geiger K, Gaenger S, Drexel H, Dechow T, Decker T. Plasma apolipoprotein M predicts overall survival in metastatic breast cancer patients. Breast Cancer Res Treat 2023; 201:571-576. [PMID: 37490173 DOI: 10.1007/s10549-023-07045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Apolipoprotein M (APOM) is a plasma apolipoprotein closely involved with lipid metabolism and inflammation. In vitro studies suggest that APOM may also have a tumor-suppressive role in breast cancer. In the present study, we aimed to evaluate the impact of plasma APOM levels on the prognosis of breast cancer patients. METHODS We measured APOM levels using an enzyme-linked immunosorbent assay in 75 patients with ER-positive/HER2-negative metastatic breast cancer. The endpoint was overall survival (OS) at 24 months. RESULTS During the 24-month follow-up period, 34.7% of the patients died. Baseline APOM levels were significantly reduced in patients who deceased during follow-up compared to survivors (42.7 ± 14.5 µg/mL versus 52.2 ± 13.8 µg/mL; P = 0.003). Cox regression analysis showed a hazard ratio of 0.30 [95% confidence interval 0.15-0.61]; P < 0.001 per doubling of APOM levels. Correction for age, C-reactive protein, menopausal state, histology of the primary tumor, metastatic site, number of metastases, endocrine resistance, scheduled therapy line, and kind of scheduled therapy indicated that circulating APOM predicted OS independently of these parameters (HRper doubling = 0.23 [0.09-0.56; P = 0.001). CONCLUSIONS Our study suggests that circulating APOM is significantly linked with reduced mortality in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria.
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
4
|
Li Z, Bu D, Wang X, Zhu L, Lei D, Tang F, Sun X, Chen C, Ji X, Bai S. Chidamide and Oxaliplatin Synergistically Inhibit Colorectal Cancer Growth by Regulating the RPS27A-MDM2-P53 Axis. Onco Targets Ther 2023; 16:703-721. [PMID: 37667747 PMCID: PMC10475304 DOI: 10.2147/ott.s416824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose The present study explored the anti-tumor effects of chidamide plus oxaliplatin on colorectal cancer (CRC) and examined its underlying mechanism. Material and Methods First, the Combination Index (CI) of chidamide and oxaliplatin was evaluated via CCK-8 assay. Second, the effects of chidamide and oxaliplatin monotherapy and the combined treatment on cell proliferation, invasion, migration, and apoptosis were detected. Third, whole-transcriptome RNA sequencing (RNA-seq) was performed to seek the potential targeted gene by which chidamide plus oxaliplatin exerted anti-tumor effects. Fourth, the validation of the targeted gene and the signal pathway it regulated were performed. Finally, the anti-tumor effect of chidamide plus oxaliplatin on mice xenograft was examined. Results Chidamide and oxaliplatin acted synergistically to inhibit CRC growth in vitro and in vivo (CI<1). Besides, compared with oxaliplatin monotherapy, chidamide could significantly enhance oxaliplatin-induced inhibition in cell proliferation, invasion, and migration, and promotion in HCT-116 and RKO cell apoptosis (P<0.05). The RNA-seq displayed that, compared to oxaliplatin monotherapy, RPS27A mRNA was evidently decreased in HCT-116 cells treated with chidamide plus oxaliplatin (P<0.001). Then, we found RPS27A was highly expressed in CRC tissues and CRC cell lines (P<0.001). Silence of RPS27A attenuated proliferation and induced apoptosis in HCT-116 and RKO cells via downregulation of MDM2 expression and upregulation of P53. Next, RPS27A overexpression could partially reverse chidamide plus oxaliplatin induced growth inhibition and apoptosis in HCT-116 and RKO cells (P<0.01). RPS27A overexpression could promote the upregulation of MDM2 and downregulation of P53 after the combined treatment of chidamide with oxaliplatin. Conclusion Chidamide and oxaliplatin acted synergistically to suppress CRC growth by the inhibition of the RPS27A-MDM2-p53 axis.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Deyong Bu
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xiaobin Wang
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Lin Zhu
- Department of Ultrasound, the Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Daoyan Lei
- Department of Ultrasound, Jiangchuan District People’s Hospital, Yuxi, Yunnan, 652600, People’s Republic of China
| | - Fengling Tang
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xianghua Sun
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Cheng Chen
- Department of Breast Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xiang Ji
- Department of Day Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Song Bai
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| |
Collapse
|
5
|
Luo J, Zhao H, Chen L, Liu M. Multifaceted functions of RPS27a: An unconventional ribosomal protein. J Cell Physiol 2023; 238:485-497. [PMID: 36580426 DOI: 10.1002/jcp.30941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin-RPS27a (Ub-RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.
Collapse
Affiliation(s)
- Jingshun Luo
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
7
|
Wang Q, Cai Y, Fu X, Chen L. High RPS27A Expression Predicts Poor Prognosis in Patients With HPV Type 16 Cervical Cancer. Front Oncol 2021; 11:752974. [PMID: 34796111 PMCID: PMC8593198 DOI: 10.3389/fonc.2021.752974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence and the mortality rate of cervical cancer have been gradually increasing, becoming one of the major causes of cancer-related death in women. In particular, patients with advanced and recurrent cervical cancers present a very poor prognosis. In addition, the vast majority of cervical cancer cases are caused by human papillomavirus (HPV) infection, of which HPV16 infection is the main cause and squamous cell carcinoma is the main presenting type. In this study, we performed screening of differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) database and GSE6791, constructed a protein–protein interaction (PPI) network to screen 34 hub genes, filtered to the remaining 10 genes using the CytoHubba plug-in, and used survival analysis to determine that RPS27A was most associated with the prognosis of cervical cancer patients and has prognostic and predictive value for cervical cancer. The most significant biological functions and pathways of RPS27A enrichment were subsequently investigated with gene set enrichment analysis (GSEA), and integration of TCGA and GTEx database analyses revealed that RPS27A was significantly expressed in most cancer types. In this study, our analysis revealed that RPS27A can be used as a prognostic biomarker for HPV16 cervical cancer and has biological significance for the growth of cervical cancer cells.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| | - Yan Cai
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| | - Xuewen Fu
- School of Medicine, Ningbo University, Ningbo, China
| | - Liang Chen
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| |
Collapse
|
8
|
Bordoni V, Sanna L, Lyu W, Avitabile E, Zoroddu S, Medici S, Kelvin DJ, Bagella L. Silver Nanoparticles Derived by Artemisia arborescens Reveal Anticancer and Apoptosis-Inducing Effects. Int J Mol Sci 2021; 22:ijms22168621. [PMID: 34445327 PMCID: PMC8395306 DOI: 10.3390/ijms22168621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
The fight against cancer is one of the main challenges for medical research. Recently, nanotechnology has made significant progress, providing possibilities for developing innovative nanomaterials to overcome the common limitations of current therapies. In this context, silver nanoparticles (AgNPs) represent a promising nano-tool able to offer interesting applications for cancer research. Following this path, we combined the silver proprieties with Artemisia arborescens characteristics, producing novel nanoparticles called Artemisia-AgNPs. A "green" synthesis method was performed to produce Artemisia-AgNPs, using Artemisia arborescens extracts. This kind of photosynthesis is an eco-friendly, inexpensive, and fast approach. Moreover, the bioorganic molecules of plant extracts improved the biocompatibility and efficacy of Artemisia-AgNPs. The Artemisia-AgNPs were fully characterized and tested to compare their effects on various cancer cell lines, in particular HeLa and MCF-7. Artemisia-AgNPs treatment showed dose-dependent growth inhibition of cancer cells. Moreover, we evaluated their impact on the cell cycle, observing a G1 arrest mediated by Artemisia-AgNPs treatment. Using a clonogenic assay after treatment, we observed a complete lack of cell colonies, which demonstrated cell reproducibility death. To have a broader overview on gene expression impact, we performed RNA-sequencing, which demonstrated the potential of Artemisia-AgNPs as a suitable candidate tool in cancer research.
Collapse
Affiliation(s)
- Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Weidong Lyu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515011, China;
| | - Elisabetta Avitabile
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100 Sassari, Italy;
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515011, China;
- Department of Microbiology and Immunology, Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.B.); (L.S.); (W.L.); (E.A.); (S.Z.)
- Centre for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|