1
|
AHMAD M. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security. FRONTIERS IN PLANT SCIENCE 2023; 14:1133036. [PMID: 36993865 PMCID: PMC10040607 DOI: 10.3389/fpls.2023.1133036] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Genome editing techniques are being used to modify plant breeding, which might increase food production sustainably by 2050. A product made feasible by genome editing is becoming better known, because of looser regulation and widespread acceptance. The world's population and food supply would never have increased proportionally under current farming practices. The development of plants and food production has been greatly impacted by global warming and climate change. Therefore, minimizing these effects is crucial for agricultural production that is sustainable. Crops are becoming more resilient to abiotic stress because of sophisticated agricultural practices and a better understanding of the abiotic stress response mechanism. Both conventional and molecular breeding techniques have been used to create viable crop types both processes are time-consuming. Recently, plant breeders have shown an interest in genome editing approaches for genetic manipulation that use clustered regularly interspaced short palindromic repeats (CRISPR/Cas9). To ensure the security of the food supply in the future, plant kinds with desired traits must be developed. A completely new era in plant breeding has begun because of the revolution in genome editing techniques based on the CRISPR/CRISPR-associated nuclease (Cas9) systems. All plants may effectively target a particular gene or group of loci using Cas9 and single-guide RNA (sgRNA). CRISPR/Cas9 can thereby save time and labor compared to conventional breeding methods. An easy, quick, and efficient method for directly altering the genetic sequences in cells is with the CRISPR and Cas9 systems. The CRISPR-Cas9 system, which was developed from components of the earliest known bacterial immune system, allows for targeted gene breakage and gene editing in a variety of cells/RNA sequences to guide endonuclease cleavage specificity in the CRISPR-Cas9 system. Editing can be directed to practically any genomic site by altering the guide RNA (gRNA) sequence and delivering it to a target cell along with the Cas9 endonuclease. We summarize recent CRISPR/Cas9 plant research findings, investigate potential applications in plant breeding, and make predictions about likely future breakthroughs and approaches to food security through 2050.
Collapse
Affiliation(s)
- M. AHMAD
- Department of Plant Sciences, University of Nebraska, Lincoln, NE, United States
- Department of Genetics and Plant Breeding, Sheri-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| |
Collapse
|
2
|
Gao J, Liu H, Zhang Z, Liang Z. Establishment, optimization, and application of genetic technology in Aspergillus spp. Front Microbiol 2023; 14:1141869. [PMID: 37025635 PMCID: PMC10071863 DOI: 10.3389/fmicb.2023.1141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Zhihong Liang,
| |
Collapse
|
3
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021; 22:11753. [PMID: 34769204 PMCID: PMC8583973 DOI: 10.3390/ijms222111753] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan 60000, Pakistan;
| | - Alaa T. Qusmani
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia;
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Muhammad Zubair Ghouri
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sabin Aslam
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Muhammad Salman Mubarik
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Ahmad Munir
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Qaiser Sultan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Sameer H. Qari
- Molecular Biology Central Laboratory (GMCL), Department of Biology/Genetics, Aljumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia
| |
Collapse
|
4
|
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
5
|
Xu X, Huang R, Yin WB. An Optimized and Efficient CRISPR/Cas9 System for the Endophytic Fungus Pestalotiopsis fici. J Fungi (Basel) 2021; 7:809. [PMID: 34682231 PMCID: PMC8539907 DOI: 10.3390/jof7100809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi are emerging as attractive producers of natural products with diverse bioactivities and novel structures. However, difficulties in the genetic manipulation of endophytic fungi limit the search of novel secondary metabolites. In this study, we improved the polyethylene glycol (PEG)-mediated protoplast transformation method by introducing the CRISPR/Cas9 system into endophytic fungus Pestalotiopsis fici. Using this approach, we performed genome editing such as site-specific gene insertion, dual-locus mutations, and long DNA fragment deletions in P. fici efficiently. The average efficiency for site-specific gene insertion and two-site gene editing was up to 48.0% and 44.4%, respectively. In addition, the genetic manipulation time with long DNA fragment (5-10 kb) deletion was greatly shortened to one week in comparison with traditional methods such as Agrobacterium tumefaciens-mediated transformation (ATMT). Taken together, the development of the CRISPR/Cas9 system in the endophytic fungus will accelerate the discovery of novel natural products and further biological study.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.X.); (R.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runye Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.X.); (R.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.X.); (R.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021; 15:353-361. [PMID: 34456559 PMCID: PMC8388126 DOI: 10.2147/btt.s326422] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and their associated protein (Cas-9) is the most effective, efficient, and accurate method of genome editing tool in all living cells and utilized in many applied disciplines. Guide RNA (gRNA) and CRISPR-associated (Cas-9) proteins are the two essential components in CRISPR/Cas-9 system. The mechanism of CRISPR/Cas-9 genome editing contains three steps, recognition, cleavage, and repair. The designed sgRNA recognizes the target sequence in the gene of interest through a complementary base pair. While the Cas-9 nuclease makes double-stranded breaks at a site 3 base pair upstream to protospacer adjacent motif, then the double-stranded break is repaired by either non-homologous end joining or homology-directed repair cellular mechanisms. The CRISPR/Cas-9 genome-editing tool has a wide number of applications in many areas including medicine, agriculture, and biotechnology. In agriculture, it could help in the design of new grains to improve their nutritional value. In medicine, it is being investigated for cancers, HIV, and gene therapy such as sickle cell disease, cystic fibrosis, and Duchenne muscular dystrophy. The technology is also being utilized in the regulation of specific genes through the advanced modification of Cas-9 protein. However, immunogenicity, effective delivery systems, off-target effect, and ethical issues have been the major barriers to extend the technology in clinical applications. Although CRISPR/Cas-9 becomes a new era in molecular biology and has countless roles ranging from basic molecular researches to clinical applications, there are still challenges to rub in the practical applications and various improvements are needed to overcome obstacles.
Collapse
Affiliation(s)
- Misganaw Asmamaw
- Division of Biochemistry, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Belay Zawdie
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|