1
|
Koga M, Sato M, Nakagawa R, Tokuno S, Asai F, Maezawa Y, Nagamine M, Yoshino A, Toda H. Molecular hydrogen supplementation in mice ameliorates lipopolysaccharide-induced loss of interest. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e70000. [PMID: 39171191 PMCID: PMC11337204 DOI: 10.1002/pcn5.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Aim The objective of this study was to evaluate the potential of hydrogen in preventing and treating psychiatric symptoms, particularly depressed mood and loss of interest, and to explore its underlying mechanisms. A mouse model exhibiting inflammation-derived depressive symptoms was used for the investigation. Methods Institute of Cancer Research mice were subjected to a 7-day intervention of either 30% hydrogen or 40 g per day of air via jelly intake. On the final day, lipopolysaccharide (LPS) was intraperitoneally administered at 5 mg/kg to induce inflammation-related depressive symptoms. Behavioral and biochemical assessments were conducted 24 h post-LPS administration. Results Following LPS administration, a decrease in spontaneous behavior was observed; however, this effect was mitigated in the group treated with hydrogen. The social interaction test revealed a significant reduction in interactions with unfamiliar mice in the LPS-treated group, whereas the hydrogen-treated group exhibited no such decrease. No significant changes were noted in the forced-swim test for either group. Additionally, the administration of LPS in the hydrogen group did not result in a decrease in zonula occludens-1, a biochemical marker associated with barrier function at the cerebrovascular barrier and expressed in tight junctions. Conclusion Hydrogen administration demonstrated a preventive effect against the LPS-induced loss of interest, suggesting a potential role in symptom prevention. However, it did not exhibit a suppressive effect on depressive symptoms in this particular model. These findings highlight the nuanced impact of hydrogen in the context of inflammation-induced psychiatric symptoms, indicating potential avenues for further exploration and research.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Mayumi Sato
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Ryuichi Nakagawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Shinichi Tokuno
- Graduate School of Health InnovationKanagawa University of Human ServicesKanagawaJapan
- Department of BioengineeringGraduate School of EngineeringTokyoJapan
| | - Fumiho Asai
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Yuri Maezawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Masanori Nagamine
- Division of Behavioral SciencesNational Defense Medical College Research InstituteSaitamaJapan
| | - Aihide Yoshino
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Hiroyuki Toda
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
2
|
Alqudah A, Qnais E, Abu-Safieh K, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Alemleh M, Alotaibi BS. Therapeutic potential of a novel pyrazolyl-pyridine derivative in the treatment of experimental colitis. Future Med Chem 2024; 16:1971-1982. [PMID: 39157857 PMCID: PMC11485772 DOI: 10.1080/17568919.2024.2385298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: Investigating a novel compound, DMPNP, for treating colitis in mice, a key issue in inflammatory bowel diseases (IBD).Methods: Mice with induced colitis received DMPNP (50, 100, 150 mg/kg) or sulfasalazine (SUL), evaluated via tissue assessment, Disease Activity Index (DAI), myeloperoxidase (MPO), nitric oxide (NO) levels and cytokine analysis.Results: DMPNP significantly reduced colitis symptoms, inflammation and oxidative stress at higher doses, with marked improvements in DAI, MPO, NO and cytokines, comparable to SUL results.Conclusion: DMPNP shows potent anti-inflammatory and immunomodulatory properties, indicating potential as an IBD therapeutic. Further clinical trials are suggested to validate these outcomes.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Kayed Abu-Safieh
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Alqudah
- Physiology Department, School of Medicine & Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohammad Alemleh
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
3
|
Li J, Huang G, Wang J, Wang S, Yu Y. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment. J Inflamm Res 2024; 17:933-945. [PMID: 38370464 PMCID: PMC10871146 DOI: 10.2147/jir.s445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Juexin Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Ma K, Hu X, Nambu K, Ueda D, Ichimaru N, Fujino M, Li XK. Coral calcium carried hydrogen ameliorates the severity of non-alcoholic steatohepatitis induced by a choline deficient high carbohydrate fat-free diet in elderly rats. Sci Rep 2023; 13:11646. [PMID: 37468618 DOI: 10.1038/s41598-023-38856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Hydrogen has been reported to act as an antioxidant, anti-apoptosis and anti-inflammatory agent. Coral calcium carried hydrogen (G2-SUISO) is a safer and more convenient form of hydrogen agent than others. The mechanism underlying the hepatoprotective effects of G2-SUISO using an elderly non-alcoholic steatohepatitis (NASH) rat model was investigated. Two days after fasting, six-month-old elderly male F344/NSlc rats were given a choline deficient high carbohydrate fat-free (CDHCFF) diet from day 0 to day 3 as CDHCFF control group, and then switched to a normal diet from days 4 to 7 with or without 300 mg/kg G2-SUISO. Rats in each group were finally being sacrificed on day 3 or day 7. In the CDHCFF diet group, G2-SUISO decreased the liver weight-to-body weight ratio, the serum AST, ALT, total cholesterol levels, inflammatory infiltration, pro-inflammatory cytokine expression and lipid droplets with inhibiting lipogenic pathways by reducing sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase and fatty acid synthase gene expression compared with the CDHCFF diet alone. G2-SUISO had beneficial effects of anti-apoptosis as well the down-regulation of pro-apoptotic molecules including NF-κB, caspase-3, caspase-9 and Bax. These findings suggest that G2-SUISO treatment exerts a significant hepatoprotective effect against steatosis, inflammation and apoptosis in elderly NASH rats.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | | | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
5
|
Kolahi Z, Yaghoubi A, Rezaeian N, Khazaei M. Exercise Improves Clinical Symptoms, Pathological Changes and Oxidative/Antioxidative Balance in Animal Model of Colitis. Int J Prev Med 2023; 14:46. [PMID: 37351030 PMCID: PMC10284199 DOI: 10.4103/ijpvm.ijpvm_162_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Ulcerative colitis is one of the major phenotypic forms of inflammatory bowel diseases. The present study aimed to investigate the effect of force swimming exercise on clinical symptoms (disease activity index; DAI), colon histopathology, inflammation and fibrosis, and oxidant/antioxidant balance in dextran sulfate sodium (DSS)-induced colitis mice. Methods Male C57BL6 mice were randomly divided into five groups (n = 6 each): control, exercise, colitis, colitis + sulfasalazine, and colitis + exercise. Exercise was performed by forced swimming six weeks before and during the experiment. Colitis was induced by 1.5% DSS in drinking water. The animals were evaluated for body weight changes and DAI (including changes of body weight, stool consistency, rectal bleeding, and prolapse) during the induction of colitis and treatment. At the end of experiment, colons and spleens were evaluated by H and E and Masson Trichrome stainings. Oxidant (Malon dialdehyde; MDA), and antioxidant markers [total thiol groups, superoxide dismutase (SOD), and catalase activity] were also measured in colon tissue. Results Results indicated that exercise in colitis mice significantly improved DAI, colon length, spleen weight, and histological injury score and alleviated fibrotic changes in colon tissue that were comparable to sulfasalazine group. Exercise also restored the oxidant/antioxidant balance in colitis mice by reducing MDA and increasing antioxidative markers including total thiol groups, SOD, and catalase activity. Conclusions Taken together, aerobic exercise could improve clinical symptoms and colonic inflammation through, at least, the balancing the oxidative stress markers. Thus, it can be considered in management of colitis patients as effective method.
Collapse
Affiliation(s)
- Zohreh Kolahi
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Ali Yaghoubi
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Najmeh Rezaeian
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Shen D, Ma S, Li X, Lu Y. Effect of Lactobacillus with Feruloyl Esterase-Producing Ability on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14817-14830. [PMID: 36394387 DOI: 10.1021/acs.jafc.2c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC) is becoming an increasingly serious health problem. This study aimed to investigate the effect of a newly isolated Lactobacillus species that produces feruloyl esterase (FAEb) on dextran sodium sulfate (DSS)-induced UC in mice. In this study, FAEb supplementation slowed body weight loss and mitigated colon length shortening, the severity of fecal occult blood, and increases in the disease activity index (DAI) in UC model mice. FAEb supplementation was also shown to reduce the expression of proinflammatory factors, increase the antioxidant capacity, improve the production of beneficial short-chain fatty acids (SCFAs), upregulate the expression of tight junction proteins, reduce the histopathological scores, and reduce mucous barrier damage in the gut. Furthermore, FAEb supplementation was shown to inhibit inflammatory NF-κB signaling pathway activity, increase the abundance of beneficial bacteria, and regulate the balance of microbiota in the gut. These results suggest that FAEb may serve as a potential probiotic to prevent and treat UC.
Collapse
Affiliation(s)
- Dan Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, P. R. China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, P. R. China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, P. R. China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Kura B, Szantova M, LeBaron TW, Mojto V, Barancik M, Szeiffova Bacova B, Kalocayova B, Sykora M, Okruhlicova L, Tribulova N, Gvozdjakova A, Sumbalova Z, Kucharska J, Faktorova X, Jakabovicova M, Durkovicová Z, Macutek J, Koscová M, Slezak J. Biological Effects of Hydrogen Water on Subjects with NAFLD: A Randomized, Placebo-Controlled Trial. Antioxidants (Basel) 2022; 11:antiox11101935. [PMID: 36290657 PMCID: PMC9598482 DOI: 10.3390/antiox11101935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2’-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Maria Szantova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84721, USA
| | - Viliam Mojto
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Ludmila Okruhlicova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Narcisa Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Anna Gvozdjakova
- Pharmacobiochemical Laboratory of 3rd Medical Department, Medical Faculty, Comenius University Bratislava, 811 08 Bratislava, Slovakia
| | - Zuzana Sumbalova
- Pharmacobiochemical Laboratory of 3rd Medical Department, Medical Faculty, Comenius University Bratislava, 811 08 Bratislava, Slovakia
| | - Jarmila Kucharska
- Pharmacobiochemical Laboratory of 3rd Medical Department, Medical Faculty, Comenius University Bratislava, 811 08 Bratislava, Slovakia
| | - Xenia Faktorova
- Internal Clinic of Slovak Medical University, Hospital of St. Michael, 811 08 Bratislava, Slovakia
| | - Martina Jakabovicova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Zuzana Durkovicová
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Jan Macutek
- Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Slovakia
- Department of Mathematics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Michaela Koscová
- Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-903620181
| |
Collapse
|