1
|
Hong L, Huang F, Hu Z, Dong Q, Kong Y, Zheng X, Li M, Cui Y. Role of PD-1 in modulating IFN-γ-CXCL9/10-CXCR3 signaling in breast cancer. J Biochem Mol Toxicol 2024; 38:e23842. [PMID: 39588744 DOI: 10.1002/jbt.23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 11/27/2024]
Abstract
Breast cancer represents a significant health burden globally, necessitating ongoing advancements in treatment strategies for improved patient outcomes. Immunotherapy, particularly targeting immune checkpoints like programmed death-1 (PD-1), has emerged as a promising approach in cancer therapy. This study focuses on elucidating the role of PD-1 in modulating the IFN-γ-CXCL9/10-CXCR3 signaling axis within the breast cancer microenvironment. By investigating the synergistic effects of PD-1 inhibitors in combination with Inetetamab, our research aims to uncover novel therapeutic targets for enhancing immunotherapy efficacy in breast cancer. Through comprehensive experimental analysis, we seek to deepen our understanding of the intricate molecular mechanisms underlying immune regulation in breast cancer, thereby paving the way for more effective and sustainable treatment strategies. Ultimately, our study endeavors to establish a robust theoretical framework that can guide the development of innovative clinical interventions, aiming for improved outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Lei Hong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Huang
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zexian Hu
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Dong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Kong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Zheng
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Man Li
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanzhi Cui
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Li Q, Huang X, Zhao Y. Prediction of Prognosis and Immunotherapy Response with a Novel Natural Killer Cell Marker Genes Signature in Osteosarcoma. Cancer Biother Radiopharm 2024; 39:502-516. [PMID: 37889617 DOI: 10.1089/cbr.2023.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Background: Natural killer (NK) cells are characterized by their antitumor efficacy without previous sensitization, which have attracted attention in tumor immunotherapy. The heterogeneity of osteosarcoma (OS) has hindered therapeutic application of NK cell-based immunotherapy. The authors aimed to construct a novel NK cell-based signature to identify certain OS patients more responsive to immunotherapy. Materials and Methods: A total of eight publicly available datasets derived from patients with OS were enrolled in this study. Single-cell RNA sequencing data obtained from the Gene Expression Omnibus (GEO) database were analyzed to screen NK cell marker genes. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was used to construct an NK cell-based prognostic signature in the TARGET-OS dataset. The differences in immune cell infiltration, immune system-related metagenes, and immunotherapy response were evaluated among risk subgroups. Furthermore, this prognostic signature was experimentally validated by reverse transcription-quantitative real-time PCR (RT-qPCR). Results: With differentially expressed NK cell marker genes screened out, a five-gene NK cell-based prognostic signature was constructed. The prognostic predictive accuracy of the signature was validated through internal clinical subgroups and external GEO datasets. Low-risk OS patients contained higher abundances of infiltrated immune cells, especially CD8 T cells and naive CD4 T cells, indicating that T cell exhaustion states were present in the high-risk OS patients. As indicated from correlation analysis, immune system-related metagenes displayed a negative correlation with risk scores, suggesting the existence of immunosuppressive microenvironment in OS. In addition, based on responses to immune checkpoint inhibitor therapy in two immunotherapy datasets, the signature helped predict the response of OS patients to anti-programmed cell death protein 1 (PD-1) or anti-programmed cell death ligand 1 (PD-L1) therapy. RT-qPCR results demonstrated the roughly consistent relationship of these five gene expressions with predicting outcomes. Conclusions: The NK cell-based signature is likely to be available for the survival prediction and the evaluation of immunotherapy response of OS patients, which may shed light on subsequent immunotherapy choices for OS patients. In addition, the authors revealed a potential link between immunosuppressive microenvironment and OS.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Xiaoyan Huang
- Department of Geriatrics, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Youfang Zhao
- Department of Geriatrics, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| |
Collapse
|
3
|
Li G, Wang H, Meftahpour V. Overall review of curative impact and barriers of CAR-T cells in osteosarcoma. EXCLI JOURNAL 2024; 23:364-383. [PMID: 38655095 PMCID: PMC11036068 DOI: 10.17179/excli2023-6760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Osteosarcoma (OS) is a rare form of cancer and primary bone malignancy in children and adolescents. Current therapies include surgery, chemotherapy, and amputation. Therefore, a new therapeutic strategy is needed to dramatically change cancer treatment. Recently, chimeric antigen receptor T cells (CAR-T cells) have been of considerable interest as it has provided auspicious results and patients suffering from low side effects after injection that resolve with current therapy. However, there are reports that cytokine release storm (CRS) can be observed in some patients. In addition, as researchers have faced problems that limit and suppress T cells, further studies are required to resolve these problems. In addition, to maximize the therapeutic benefit of CAR-T cell therapy, researchers have suggested that combination therapy could be better used to treat cancer by overcoming any problems and reducing side effects as much as possible. This review summarizes these problems, barriers, and the results of some studies on the evaluation of CAR-T cells in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guilin Li
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Hong Wang
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Vafa Meftahpour
- Medical Immunology, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Weil R, Loeb D. Breaking down the tumor immune infiltration within pediatric sarcomas. Front Endocrinol (Lausanne) 2023; 14:1187289. [PMID: 37424864 PMCID: PMC10324675 DOI: 10.3389/fendo.2023.1187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapies are a promising therapeutic option, yet for a variety of reasons, these treatments have achieved limited success against sarcomas. The immunosuppressive tumor microenvironment (TME) of sarcomas as well as lack of predictive biomarkers, decreased T-cell clonal frequency, and high expression of immunosuppressive infiltrating cells has thus far prevented major success using immunotherapies. By breaking down the TME into its individual components and understanding how the various cell types interact with each other as well as in the context of the complex immune microenvironment, can lead to effective therapeutic immunotherapy treatments, potentially improving outcomes for those with metastatic disease.
Collapse
Affiliation(s)
- Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - David Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Zhang Z, Tan X, Jiang Z, Wang H, Yuan H. Immune checkpoint inhibitors in osteosarcoma: A hopeful and challenging future. Front Pharmacol 2022; 13:1031527. [PMID: 36324681 PMCID: PMC9618820 DOI: 10.3389/fphar.2022.1031527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant tumor in the musculoskeletal system, mainly occurs in adolescents. OS results in high mortality and disability rates due to a fatal metastatic tendency and subsequent iatrogenic damage caused by surgery, radiotherapy and chemotherapy. Recently, immunotherapies have resulted in promising prognoses with reduced side effects compared with traditional therapies. Immune checkpoint inhibitors (ICIs), which are a representative immunotherapy for OS, enhance the antitumor effects of immune cells. ICIs have shown satisfactory outcomes in other kinds of malignant tumors, especially hemopoietic tumors. However, there is still a high percentage of failures or severe side effects associated with the use of ICIs to treat OS, leading to far worse outcomes. To reveal the underlying mechanisms of drug resistance and side effects, recent studies elucidated several possible reasons, including the activation of other inhibitory immune cells, low immune cell infiltration in the tumor microenvironment, different immune properties of OS subtypes, and the involvement of osteogenesis and osteolysis. According to these mechanisms, researchers have developed new methods to overcome the shortcomings of ICIs. This review summarizes the recent breakthroughs in the use of ICIs to treat OS. Although numerous issues have not been solved yet, ICIs are still the most promising treatment options to cure OS in the long run.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xin Tan
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| | - Hengfeng Yuan
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| |
Collapse
|
6
|
Bioinformatics Analysis Reveals an Association between Autophagy, Prognosis, Tumor Microenvironment, and Immunotherapy in Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:4220331. [PMID: 35874628 PMCID: PMC9303156 DOI: 10.1155/2022/4220331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Autophagy is a catabolic pathway involved in the regulation of bone homeostasis. We explore clinical correlation of autophagy-related key molecules to establish risk signature for predicting the prognosis, tumor microenvironment (TME), and immunotherapy response of osteosarcoma. Single cell RNA sequencing data from GSE162454 dataset distinguished malignant cells from normal cells in osteosarcoma. Autophagy-related genes (ARGs) were extracted from the established risk signature of the Molecular Signatures Database of Gene Set Enrichment Analysis (GSEA) by univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Overall survival (OS), TME score, abundance of infiltrating immune cells, and response to immune-checkpoint blockade (ICB) treatment in patients with different risks were compared based on risk score. Nine ARGs were identified and risk signature was constructed. In all osteosarcoma datasets, the OS was significantly longer in the high-risk patients than low-risk onset. Risk signature significantly stratified clinical outcomes, including OS, metastatic status, and survival status. Risk signature was an independent variable for predicting osteosarcoma OS and showed high accuracy. A nomogram based on risk signature and metastases was developed. The calibration curve confirmed the consistency in 1-year, 3-year, and 5-year predicted OS and the actual OS. The risk score was related to 6 kinds of T cells and macrophages, myeloid-derived suppressor cell, natural killer cell, immune score, and stromal score in TME. The risk signature helped in predicting patients' response to anti-PD1/anti-PD-L1 treatment. The ARGs-led risk signature has important value for survival prediction, risk stratification, tumor microenvironment, and immune response evaluation of osteosarcoma.
Collapse
|
7
|
Shi Y, Tian Y, Sun X, Qiu Y, Zhao Y. Silencing circOMA1 Inhibits Osteosarcoma Progression by Sponging miR-1294 to Regulate c-Myc Expression. Front Oncol 2022; 12:889583. [PMID: 35493998 PMCID: PMC9043560 DOI: 10.3389/fonc.2022.889583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Several studies have reported that circRNAs have a crucial function in the tumorigenesis of various cancers. However, the expression and function of circOMA1 in osteosarcoma is unknown. Methods circOMA1 was identified through bioinformatics analysis. qRT-PCR was used to assess the expressions of circOMA1, miR-1294, and c-Myc in osteosarcoma tissues. Further, we performed functional experiments to explore the biological function of circOMA1 in osteosarcoma. Moreover, a luciferase reporter assay, RNA immunoprecipitation (RIP), and fluorescence in situ hybridisation (FISH) assay were performed to demonstrate the association between circOMA1 and miR-1294. Results circOMA1 exhibited considerable upregulation in osteosarcoma tissues compared with adjacent normal tissues. Silencing circOMA1 suppressed osteosarcoma progression in vitro and in vivo. Mechanically, circOMA1 functioned as a sponge of miR-1294 to upregulate c-Myc expression. Conclusion circOMA1 played the role of an oncogene in osteosarcoma and promoted osteosarcoma progression by mediating the miR-1294/c-Myc pathway, which might be a new target for treating osteosarcoma.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunyun Tian
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangran Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonglong Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|