1
|
Aker AM, Ayotte P, Gaudreau É, Lemire M. Current-use pesticide exposures in remote Inuit communities. Int J Circumpolar Health 2024; 83:2421048. [PMID: 39460982 PMCID: PMC11514410 DOI: 10.1080/22423982.2024.2421048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The global use of pesticides is increasing; however, few studies have examined the exposure of current-use pesticide exposure in Inuit populations. Some current use pesticides are also capable of long-range transport, potentially increasing exposures to northern populations. The study aim was to analyse pesticide (chlorophenoxy, organophosphates, and pyrethroid pesticide) biomarker levels in pooled samples from an Inuit population in Nunavik, Quebec. Thirty pooled samples from the Qanuilirpitaa? 2017 survey (Q2017) from individuals aged 16-80 years were included. Creatinine-adjusted arithmetic (AM) were compared by sex, age, and region sub-groups, and geometric mean concentrations (GM) were compared to those in the Canadian Health Measures Survey (CHMS). Most analysed pesticide biomarkers were detected, and PNP (a metabolite of methyl and ethyl parathion), trans-DCCA (a metabolite of pyrethroids), and 3,5,6-TCP (a metabolite of chlorpyrifos) had the highest concentrations. Concentrations in Q2017 were largely similar to or less than CHMS concentrations. Although not significant, there was a general increase in 2,4-D (a chlorophenoxy biomarker), 3,5,6-TCP, 3-PBA (a metabolite of pyrethroids), and trans-DCCA with increasing age. Concentrations were also somewhat higher in females versus males, but these were not significant. Environmental exposures to current use pesticides were detected in Nunavik and concentrations were similar to or less than those in the general Canadian population. Regular monitoring of current use pesticide exposures is recommended given the increasing global use of pesticides.
Collapse
Affiliation(s)
- Amira M. Aker
- School of Public Health, Boston University, Boston, MA, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
| |
Collapse
|
2
|
Nero E, Caron-Beaudoin É, Aker A, Gaudreau É, Ayotte P, Blanchette C, Lemire M. Exposure to organophosphate esters among Inuit adults of Nunavik, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173563. [PMID: 38810742 DOI: 10.1016/j.scitotenv.2024.173563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Halogenated organophosphate esters (OPEs) are increasingly used as flame retardants to replace polybrominated diphenyl ethers (PBDEs), which have been phased out due to their confirmed persistence, toxicity, and ability to undergo long range atmospheric transport. Non-halogenated OPEs are primarily used as plasticizers. While human exposure to PBDEs in the Canadian Arctic is well documented, it is not the case for OPEs. To assess the exposure to OPEs in Inuit living in Nunavik (northern Québec, Canada), we measured 16 metabolites of halogenated and non-halogenated OPEs in pooled urine samples from the last population health survey conducted in Nunavik, the Qanuilirpitaa? 2017 Inuit Health Survey (Q2017). Urine samples (n = 1266) were pooled into 30 pools by sex (female; male), age groups (16-19; 20-29; 30-39; 40-59; 60+ years old) and regions (Hudson Bay; Hudson Strait; Ungava Bay). Q2017 geometric means and 95 % confidence intervals were compared with data from the Canadian Health Measures Survey Cycle 6 (2018-2019) (CHMS). Halogenated OPEs were systematically detected and generally found at higher concentrations than non-halogenated OPEs in both Q2017 and CHMS. Furthermore, urinary levels of BCIPP and BDCIPP (halogenated) were lower in Q2017 compared to CHMS while concentrations of DPhP, DpCP and DoCP (non-halogenated) were similar between Q2017 and CHMS. Across the 16 metabolites measured in Q2017, BCIPHIPP (halogenated) had the highest levels (geometric mean: 1.40 μg/g creatinine). This metabolite was not measured in CHMS and should be included in future surveys. Overall, our results show that Inuit in Nunavik are exposed to lower or similar OPEs levels than the rest of the general Canadian population suggesting that the main current exposure to OPEs may be from consumer goods containing flame retardants and imported from the south rather than long-range atmospheric transport to the Arctic.
Collapse
Affiliation(s)
- Emilie Nero
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| | - Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Québec, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada
| | - Pierre Ayotte
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada; Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Caty Blanchette
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Aker A, Nguyen V, Ayotte P, Ricard S, Lemire M. Characterizing Important Dietary Exposure Sources of Perfluoroalkyl Acids in Inuit Youth and Adults in Nunavik Using a Feature Selection Tool. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47014. [PMID: 38683744 PMCID: PMC11057678 DOI: 10.1289/ehp13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥ 16 y of age residing in Nunavik (n = 1,193 ). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
| | - Vy Nguyen
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
4
|
Little M, Brockington M, Aker A, Kenny TA, Andrade-Rivas F, Ayotte P, Lemire M. Wild fish consumption and latitude as drivers of vitamin D status among Inuit living in Nunavik, northern Québec. Public Health Nutr 2024; 27:e81. [PMID: 38384120 DOI: 10.1017/s1368980024000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To measure vitamin D status and estimate factors associated with serum 25-hydroxyvitamin D (25(OH)D) in Nunavimmiut (Inuit living in Nunavik) adults in 2017. DESIGN Data were from Qanuilirpitaa? 2017 Nunavik Inuit Health Survey, a cross-sectional study conducted in August-October 2017. Participants underwent a questionnaire, including an FFQ, and blood samples were analysed for total serum 25(OH)D. SETTING Nunavik, northern Québec, Canada. PARTICIPANTS A stratified proportional model was used to select respondents, including 1,155 who identified as Inuit and had complete data. RESULTS Geometric mean serum vitamin D levels were 65·2 nmol/l (95 % CI 62·9-67·6 nmol/l) among women and 65·4 nmol/l (95 % CI 62·3-68·7 nmol/l) among men. The weighted prevalence of serum 25(OH)D < 75 nmol/l, <50 nmol/l <30 nmol/l was 61·2 %, 30·3 % and 7·0 %, respectively. Individuals who were older, female, lived in smaller and/or more southerly communities and/or consumed more country (traditional) foods were at a reduced risk of low vitamin D status. Higher consumption of wild fish was specifically associated with increased serum 25(OH)D concentration. CONCLUSION It is important that national, regional and local policies and programs are in place to secure harvest, sharing and consumption of nutritious and culturally important country foods like Arctic char and other wild fish species, particularly considering ongoing climate change in the Arctic which impacts the availability, access and quality of fish as food.
Collapse
Affiliation(s)
- Matthew Little
- School of Public Health and Social Policy, University of Victoria, 3800 Finnerty Rd, Victoria, BC, Canada
| | - Meghan Brockington
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Tiff-Annie Kenny
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
| | - Federico Andrade-Rivas
- School of Public Health and Social Policy, University of Victoria, 3800 Finnerty Rd, Victoria, BC, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Centre de toxicologie du Québec, Institut national de santé publique du Québec, Québec, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
| |
Collapse
|