1
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Identification of Nephrin gene variants in Indian children associated with Steroid sensitive and Steroid resistant nephrotic syndrome. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
3
|
Arroyo-Parejo Drayer P, Seeherunvong W, Katsoufis CP, DeFreitas MJ, Seeherunvong T, Chandar J, Abitbol CL. Spectrum of Clinical Manifestations in Children With WT1 Mutation: Case Series and Literature Review. Front Pediatr 2022; 10:847295. [PMID: 35498778 PMCID: PMC9051246 DOI: 10.3389/fped.2022.847295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mutations of the Wilms tumor suppressor-1 gene (WT1) are associated with life-threatening glomerulopathy, disorders of sexual development, Wilm's tumor, and gonadal malignancies. Our objectives were to describe the clinical presentations, age of progression, and onset of complications of WT1 mutation through a case series and literature review. METHODS A retrospective study included all patients followed at the University of Miami/Holtz Children's Hospital from January 2000 to December 2020 with a diagnosis of WT1 mutation. A literature review of WT1 mutation cases was analyzed for clinical manifestations, karyotype, and long-term outcomes. RESULTS The WT1 mutation was identified in 9 children, median age at presentation of 0.9 years (range 1 week to 7 years). A total of four had female phenotypes, and 5 had abnormalities of male external genitalia, while all had XY karyotypes. All progressed to end-stage kidney disease (ESKD) and received a kidney transplant at a median age of 5 years (1.5-15 years). During a median time of follow-up of 9 years (range 2-28 years), there were 2 allograft losses after 7 and 10 years and no evidence of post-transplant malignancy. From 333 cases identified from the literature review, the majority had female phenotype 66% (219/333), but the predominant karyotype was XY (55%, 183/333). Of the female phenotypes, 32% (69/219) had XY sex reversal. Wilm's tumor occurred in 24%, predominantly in males with gonadal anomalies. CONCLUSIONS Early recognition of WT1 mutation is essential for comprehensive surveillance of potential malignancy, avoidance of immunosuppressants for glomerulopathy, and establishing long-term multidisciplinary management.
Collapse
Affiliation(s)
- Patricia Arroyo-Parejo Drayer
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wacharee Seeherunvong
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States.,Pediatric Renal Transplantation, Miami Transplant Institute, Jackson Health System, Miami, FL, United States
| | - Tossaporn Seeherunvong
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States.,Pediatric Renal Transplantation, Miami Transplant Institute, Jackson Health System, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Tsuji Y, Yamamura T, Nagano C, Horinouchi T, Sakakibara N, Ishiko S, Aoto Y, Rossanti R, Okada E, Tanaka E, Tsugawa K, Okamoto T, Sawai T, Araki Y, Shima Y, Nakanishi K, Nagase H, Matsuo M, Iijima K, Nozu K. Systematic Review of Genotype-Phenotype Correlations in Frasier Syndrome. Kidney Int Rep 2021; 6:2585-2593. [PMID: 34622098 PMCID: PMC8484119 DOI: 10.1016/j.ekir.2021.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Frasier syndrome (FS) is a rare inherited kidney disease caused by intron 9 splicing variants of WT1. For wild-type WT1, 2 active splice donor sites in intron 9 cause a mixture of 2 essential transcripts (with or without lysine-threonine-serine [+/KTS or −KTS]), and imbalance of the +KTS/−KTS ratio results in the development of FS. To date, 6 causative intron 9 variants have been identified; however, detailed transcript analysis has not yet been conducted and the genotype-phenotype correlation also remains to be elucidated. Methods We conducted an in vitro minigene splicing assay for 6 reported causative variants and in vivo RNA sequencing to determine the +KTS/−KTS ratio using patients’ samples. We also performed a systematic review of reported FS cases with a description of the renal phenotype. Results The in vitro assay revealed that although all mutant alleles produced −KTS transcripts only, the wild-type allele produced both +KTS and −KTS transcripts at a 1:1 ratio. In vivo RNA sequencing showed that patients’ samples with all heterozygous variants produced similar ratios of +KTS to −KTS (1:3.2−1:3.5) and wild-type kidney showed almost a 1:1 ratio (1:0.85). A systematic review of 126 cases clarified that the median age of developing ESKD was 16 years in all FS patients, and there were no statistically significant differences between the genotypes or sex chromosome karyotypes in terms of the renal survival period. Conclusion Our study suggested no differences in splicing pattern or renal survival period among reported intron 9 variants causative of FS.
Collapse
Affiliation(s)
- Yurika Tsuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eri Okada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Tanaka
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Graduate School of Meidicine, Sapporo, Japan
| | - Toshihiro Sawai
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshinori Araki
- Department of Pediatrics, Hokkaido Medical Center, Sapporo, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masafumi Matsuo
- Locomotion Biology Research Center, Kobe Gakuin University, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Thakor JM, Parmar G, Mistry KN, Gang S, Rank DN, Joshi CG. Mutational landscape of TRPC6, WT1, LMX1B, APOL1, PTPRO, PMM2, LAMB2 and WT1 genes associated with Steroid resistant nephrotic syndrome. Mol Biol Rep 2021; 48:7193-7201. [PMID: 34546508 DOI: 10.1007/s11033-021-06711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nephrotic syndrome appears as a group of symptoms like proteinuria, edema and hyperlipidemia. Identification of monogenic forms revealed the physiology and pathogenesis of the SRNS. METHODS AND RESULTS We performed Illumina panel sequencing of seven genes in 90 Indian patients to determine the role of these genetic mutations in nephrotic syndrome prognosis. Samtool was used for variants calling, and SnpEff and Snpsift did variants annotation. Clinical significance and variant classification were performed by the ClinVar database. In SSNS and SRNS patients, we found 0.78% pathogenic and 3.41% likely pathogenic mutations. Pathogenic mutations were found in LAMB2, LMX1B and WT1 genes, while likely pathogenic mutations were found in (6/13) LAMB2, (2/13) LMX1B, (2/13) TRPC6, (2/13) PTPRO and (1/13) PMM2 genes. Approximately 46% likely pathogenic mutations were contributed to the LAMB2 gene in SSNS and SRNS patients. We also detect 30 VUS (variants of uncertain significance), which were found (17/30) pathogenic and (13/30) likely pathogenic by different prediction tools. CONCLUSIONS Multigene panels were used for genetic screening of heterogeneous disorders like nephrotic syndrome in the Indian population. We found pathogenic, likely pathogenic and certain VUS, which were responsible for the pathogenesis of the disease. Therefore, mutational analysis of SSNS and SRNS is necessary to avoid adverse effects of corticosteroids, modify the intensity of immunosuppressing agents, and prevent the disease's progression.
Collapse
Affiliation(s)
- Jinal M Thakor
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Glory Parmar
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India.
| | - Sishir Gang
- Muljibhai Patel Urological Hospital, Dr. V.V. Desai Road, Nadiad, 387001, Gujarat, India
| | - Dharamshibhai N Rank
- Department of Animal Breeding and Genetics, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| |
Collapse
|
6
|
Ettou S, Jung YL, Miyoshi T, Jain D, Hiratsuka K, Schumacher V, Taglienti ME, Morizane R, Park PJ, Kreidberg JA. Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. SCIENCE ADVANCES 2020; 6:eabb5460. [PMID: 32754639 PMCID: PMC7380960 DOI: 10.1126/sciadv.abb5460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In the context of human disease, the mechanisms whereby transcription factors reprogram gene expression in reparative responses to injury are not well understood. We have studied the mechanisms of transcriptional reprogramming in disease using murine kidney podocytes as a model for tissue injury. Podocytes are a crucial component of glomeruli, the filtration units of each nephron. Podocyte injury is the initial event in many processes that lead to end-stage kidney disease. Wilms tumor-1 (WT1) is a master regulator of gene expression in podocytes, binding nearly all genes known to be crucial for maintenance of the glomerular filtration barrier. Using murine models and human kidney organoids, we investigated WT1-mediated transcriptional reprogramming during the course of podocyte injury. Reprogramming the transcriptome involved highly dynamic changes in the binding of WT1 to target genes during a reparative injury response, affecting chromatin state and expression levels of target genes.
Collapse
Affiliation(s)
- Sandrine Ettou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Youngsook L. Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoya Miyoshi
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Renal Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Ken Hiratsuka
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Renal Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Valerie Schumacher
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E. Taglienti
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Renal Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jordan A. Kreidberg
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Zhuo L, Huang L, Yang Z, Li G, Wang L. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC MEDICAL GENETICS 2019; 20:111. [PMID: 31216994 PMCID: PMC6585123 DOI: 10.1186/s12881-019-0845-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is still one of the common causes of refractory nephrotic syndrome. Nephrin, encoded by podocyte-specific NPHS1 gene, participated in the pathogenesis of FSGS. The sites of NPHS1 mutations in FSGS is not clarified very well. In this study, we investigated the specific mutations of NPHS1 gene in Chinese patients with sporadic FSGS. METHODS A total of 309 patients with sporadic FSGS were collected and screened for NPHS1 mutations by second-generation sequencing. The variants were compared with those extracted from 2504 healthy controls in the 1000 Genomes Project. The possible pathogenic roles of missense variants were predicted by three different software. We also compared these candidate causal mutations with those summarized from the previous studies. RESULTS Thirty-two genetic mutations of NPHS1 gene were identified in FSGS patients, including 12 synonymous mutations, 17 missense mutations, 1 splicing mutation, and 2 intron mutations, of which c.G3315A (p.S1105S) was the most common variant (261/309). A novel missense mutation c.G2638 T (p.V880F) and a novel splicing mutation 35830957 C > T were identified in FSGS patients. The frequencies of the four synonymous mutations (c.C294T [p.I98I], c.C2223T [p.T741 T], c.C2289T [p.V763 V], c.G3315A [p.S1105S]) were much higher in FSGS patients than in controls. The frequencies of the four missense mutations (c.G349A [p.E117K], c.G1339A [p.E447K], c.G1802C [p.G601A], c.C2398T [p.R800C]) were much higher and one (c.A3230G [p.N1077S]) was lower in FSGS patients than in controls. Five missense mutations, c.C616A (p.P206T), c.G1802C (p.G601A), c.C2309T (p.P770L), c.G2869C (p.V957 L), and c.C3274T (p.R1092C), were predicted to be pathogenic mutations by software analysis. CONCLUSIONS NPHS1 gene mutations were quite common in sporadic FSGS patients. We strongly recommend mutation analysis of the NPHS1 gene in the clinical management of FSGS patients.
Collapse
Affiliation(s)
- Ling Zhuo
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China
| | - Lulin Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China.
| | - Li Wang
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China
| |
Collapse
|
8
|
Bezdíčka M, Štolbová Š, Seeman T, Cinek O, Malina M, Šimánková N, Průhová Š, Zieg J. Genetic diagnosis of steroid-resistant nephrotic syndrome in a longitudinal collection of Czech and Slovak patients: a high proportion of causative variants in NUP93. Pediatr Nephrol 2018; 33:1347-1363. [PMID: 29869118 DOI: 10.1007/s00467-018-3950-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) has a heterogeneous spectrum of monogenic causes that substantially differ among populations. The aim of this study was to analyse the genetic aetiology of SRNS in Czech and Slovak paediatric patients. METHODS We analysed clinical data from 74 patients (38 boys) with congenital (15%), infant (14%), and childhood-onset (71%) SRNS collected from the Czech Republic and Slovakia from 2000 to 2017 (inclusive). The DNA samples were first analysed by Sanger sequencing (genes NPHS2, NPHS1, and WT1) and then by next generation sequencing (NGS) using a targeted panel of 48 genes previously associated with SRNS. Family segregation of the causative variants was confirmed by Sanger sequencing when possible. RESULTS Genetic diagnosis was established in 28/74 patients (38%) based on findings of pathogenic or likely pathogenic causative variants in genotypes conforming to the expected mode of inheritance. Sanger sequencing diagnosed 26% of patients, whereas second-tier testing by a targeted NGS panel diagnosed a further 12%. Frequent causative genes were NPHS2 (15%), WT1 (9.5%), and surprisingly NUP93 with four (5.4%) unrelated cases. Additional causative genes included COQ2 (two patients), NPHS1, INF2, DGKE, and LMX1B (one patient each). CONCLUSIONS Compared with outright use of NGS, our tiered genetic testing strategy was considerably more rapid and marginally less expensive. Apart from a high aetiological fraction of NPHS2 and WT1 genes, our study has identified an unexpectedly high frequency of a limited set of presumably ancestral causative mutations in NUP93. The results may aid in tailoring testing strategies in Central European populations.
Collapse
Affiliation(s)
- Martin Bezdíčka
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Šárka Štolbová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Tomáš Seeman
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Ondřej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic.
| | - Michal Malina
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Naděžda Šimánková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Štěpánka Průhová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Jakub Zieg
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| |
Collapse
|
9
|
NPHS2 Mutations: A Closer Look to Latin American Countries. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7518789. [PMID: 28785586 PMCID: PMC5529630 DOI: 10.1155/2017/7518789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 01/10/2023]
Abstract
Nephrotic syndrome is one of the most common kidney pathologies in childhood, being characterized by proteinuria, edema, and hypoalbuminemia. In clinical practice, it is divided into two categories based on the response to steroid therapy: steroid-sensitive and steroid resistant. Inherited impairments of proteins located in the glomerular filtration barrier have been identified as important causes of nephrotic syndrome, with one of these being podocin, coded by NPHS2 gene. NPHS2 mutations are the most frequent genetic cause of steroid resistant nephrotic syndrome. The aim of this review is to update the list of NPHS2 mutations reported between June 2013 and February 2017, with a closer look to mutations occurring in Latin American countries.
Collapse
|
10
|
Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children. Gene 2017; 625:15-20. [PMID: 28476686 DOI: 10.1016/j.gene.2017.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
Approximately 20% of children with idiopathic nephrotic syndrome do not respond to steroid therapy. More than 30 genes have been identified as disease-causing genes for the steroid-resistant nephrotic syndrome (SRNS). Few reports were from the Chinese population. The coding regions of genes commonly associated with SRNS were analyzed to characterize the gene mutation spectrum in children with SRNS in central China. The first phase study involved 38 children with five genes (NPHS1, NPHS2, PLCE1, WT1, and TRPC6) by Sanger sequencing. The second phase study involved 33 children with 17 genes by next generation DNA sequencing (NGS. 22 new patients, and 11 patients from first phase study but without positive findings). Overall deleterious or putatively deleterious gene variants were identified in 19 patients (31.7%), including four NPHS1 variants among five patients and three PLCE1 variants among four other patients. Variants in COL4A3, COL4A4, or COL4A5 were found in six patients. Eight novel variants were identified, including two in NPHS1, two in PLCE1, one in NPHS2, LAMB2, COL4A3, and COL4A4, respectively. 55.6% of the children with variants failed to respond to immunosuppressive agent therapy, while the resistance rate in children without variants was 44.4%. Our results show that screening for deleterious variants in some common genes in children clinically suspected with SRNS might be helpful for disease diagnosis as well as prediction of treatment efficacy and prognosis.
Collapse
|