1
|
Sowińska-Baranowska A, Maciejewska M. Potential Utilization of Ground Eggshells as a Biofiller for Natural Rubber Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2988. [PMID: 37109824 PMCID: PMC10143961 DOI: 10.3390/ma16082988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The aim of this work was application of ground eggshells in various amounts by weight as a biofiller for natural rubber (NR) biocomposites. Cetyltrimethylammonium bromide (CTAB), ionic liquids (ILs), i.e., 1-butyl-3-methylimidazolium chloride (BmiCl) and 1-decyl-3-methylimidazolium bromide (DmiBr), and silanes, i.e., (3-aminopropyl)-triethoxysilane (APTES) and bis [3-(triethoxysilyl)propyl] tetrasulfide (TESPTS), were used to increase the activity of ground eggshells in the elastomer matrix and to ameliorate the cure characteristics and properties of NR biocomposites. The influence of ground eggshells, CTAB, ILs, and silanes on the crosslink density, mechanical properties, and thermal stability of NR vulcanizates and their resistance to prolonged thermo-oxidation were explored. The amount of eggshells affected the curing characteristics and crosslink density of the rubber composites and therefore their tensile properties. Vulcanizates filled with eggshells demonstrated higher crosslink density than the unfilled sample by approximately 30%, whereas CTAB and ILs increased the crosslink density by 40-60% compared to the benchmark. Owing to the enhanced crosslink density and uniform dispersion of ground eggshells, vulcanizates containing CTAB and ILs exhibited tensile strength improved by approximately 20% compared to those without these additives. Moreover, the hardness of these vulcanizates was increased by 35-42%. Application of both the biofiller and the tested additives did not significantly affect the thermal stability of cured NR compared to the unfilled benchmark. Most importantly, the eggshell-filled vulcanizates showed improved resistance to thermo-oxidative aging compared to the unfilled NR.
Collapse
|
2
|
Opris H, Baciut M, Bran S, Dinu C, Armencea G, Opris D, Mitre I, Manea A, Stoia S, Tamas T, Barbur I, Baciut G. Characterization of eggshell as a bio-regeneration material. Med Pharm Rep 2023; 96:93-100. [PMID: 36818316 PMCID: PMC9924816 DOI: 10.15386/mpr-2476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of this study was to identify and summarize the characteristic features of eggshell for regeneration purpose in oral surgery procedures. Methods A review of literature was undertaken based on the PubMed database. A search to reveal the current state of knowledge and the current uses of the eggshell as a biomaterial was performed. The characteristics of the materials, the specific use, the procedure and the outcome were extracted from the articles. Results The materials have been found to be used in humans, animals, and in vitro studies. There is a wide use regarding oral surgery especially in experimental models. There have also been attempts to enhance certain properties and improve the capabilities of eggshell as a biomaterial. There is yet a commercial product to be developed and approved for human use. Conclusions Eggshell can be an important biowaste which can be of use in guided bone regeneration procedures, but it has not yet entered the commercial phase and approval through official regulation channels.
Collapse
Affiliation(s)
- Horia Opris
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daiana Opris
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ileana Mitre
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Avram Manea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sebastian Stoia
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tiberiu Tamas
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Barbur
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
The Cytokine and Bone Protein Expression by Ellagic Acid-Hydroxyapatite in Bone Remodelling Model. ScientificWorldJournal 2022; 2022:6740853. [PMID: 36561943 PMCID: PMC9767739 DOI: 10.1155/2022/6740853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Ellagic acid, a phenolic compound with anti-inflammatory potential, can be used to accelerate the bone healing process and affect human health, while hydroxyapatite is the most commonly used bone graft material. Using a combination of the two materials results in reduced inflammation and increased osteogenesis. This study aimed to determine the effects of combining ellagic acid and hydroxyapatite in bone marker remodelling by analysing the expression of tumour necrosis factor-α (TNF-α), interleukin 10 (IL-10), bone morphogenetic 4 protein (BMP-4), and osteopontin (OPN). Methods Thirty Wistar rats were used in the study. A defect was created in each animal's femur using a low-speed diamond bur. In the control group, the bone was then treated with polyethylene glycol (PEG). In one of the other groups, the bone was treated with hydroxyapatite, and in the other, with ellagic acid-hydroxyapatite. The femur was biopsied 7 days after the procedure and again 14 days after the procedure, and an indirect immunohistochemical (IHC) examination was performed for TNF-α, IL-10, BMP-4, and OPN expression. Results The ellagic acid-hydroxyapatite decreased TNF-α expression in the bone tissue after 7 days and again after 14 days (p < 0.05). On the other hand, it increased IL-10, BMP-4, and OPN expression (p < 0.05) during the same time periods. Conclusion Ellagic acid-hydroxyapatite plays a role in bone marker remodelling by decreasing the expression of TNF-α and increasing the expression of IL-10, BMP-4, and OPN. This hydroxyapatite combination can therefore be recommended for use as bone graft material.
Collapse
|
4
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Irwansyah FS, Noviyanti AR, Eddy DR, Risdiana R. Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Molecules 2022; 27:molecules27175586. [PMID: 36080349 PMCID: PMC9458247 DOI: 10.3390/molecules27175586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxyapatite (HA) is a well-known calcium phosphate ingredient comparable to human bone tissue. HA has exciting applications in many fields, especially biomedical applications, such as drug delivery, osteogenesis, and dental implants. Unfortunately, hydroxyapatite-based nanomaterials are synthesized by conventional methods using reagents that are not environmentally friendly and are expensive. Therefore, extensive efforts have been made to establish a simple, efficient, and green method to form nano-hydroxyapatite (NHA) biofunctional materials with significant biocompatibility, bioactivity, and mechanical strength. Several types of biowaste have proven to be a source of calcium in forming HA, including using chicken eggshells, fish bones, and beef bones. This systematic literature review discusses the possibility of replacing synthetic chemical reagents, synthetic pathways, and toxic capping agents with a green template to synthesize NHA. This review also shed insight on the simple green manufacture of NHA with controlled shape and size.
Collapse
Affiliation(s)
- Ferli Septi Irwansyah
- Department of Chemistry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
- Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105, Bandung 40614, Indonesia
- Correspondence: (F.S.I.); (A.R.N.)
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
- Correspondence: (F.S.I.); (A.R.N.)
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
| | - Risdiana Risdiana
- Department of Physics, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
Varghese J, Rajagopal A, Shanmugasundaram S. Role of Biomaterials Used for Periodontal Tissue Regeneration-A Concise Evidence-Based Review. Polymers (Basel) 2022; 14:3038. [PMID: 35956553 PMCID: PMC9370319 DOI: 10.3390/polym14153038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontal infections are noncommunicable chronic inflammatory diseases of multifactorial origin that can induce destruction of both soft and hard tissues of the periodontium. The standard remedial modalities for periodontal regeneration include nonsurgical followed by surgical therapy with the adjunctive use of various biomaterials to achieve restoration of the lost tissues. Lately, there has been substantial development in the field of biomaterial, which includes the sole or combined use of osseous grafts, barrier membranes, growth factors and autogenic substitutes to achieve tissue and bone regeneration. Of these, bone replacement grafts have been widely explored for their osteogenic potential with varied outcomes. Osseous grafts are derived from either human, bovine or synthetic sources. Though the biologic response from autogenic biomaterials may be better, the use of bone replacement synthetic substitutes could be practical for clinical practice. This comprehensive review focuses initially on bone graft replacement substitutes, namely ceramic-based (calcium phosphate derivatives, bioactive glass) and autologous platelet concentrates, which assist in alveolar bone regeneration. Further literature compilations emphasize the innovations of biomaterials used as bone substitutes, barrier membranes and complex scaffold fabrication techniques that can mimic the histologically vital tissues required for the regeneration of periodontal apparatus.
Collapse
Affiliation(s)
- Jothi Varghese
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (A.R.); (S.S.)
| | | | | |
Collapse
|
7
|
Wu X, Gauntlett O, Zhang T, Suvarnapathaki S, McCarthy C, Wu B, Camci-Unal G. Eggshell Microparticle Reinforced Scaffolds for Regeneration of Critical Sized Cranial Defects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60921-60932. [PMID: 34905346 DOI: 10.1021/acsami.1c19884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scaffold-based approaches for bone regeneration have been studied using a wide range of biomaterials as reinforcing agents to improve the mechanical strength and bioactivity of the 3D constructs. Eggshells are sustainable and inexpensive materials with unique biological and chemical properties to support bone differentiation. The incorporation of eggshell particles within hydrogels yields highly osteoinductive and osteoconductive scaffolds. This study reveals the effects of microparticles of whole eggshells, eggshells without a membrane, and a pristine eggshell membrane on osteogenic differentiation in protein-derived hydrogels. The in vitro studies showed that gels reinforced with eggshells with and without a membrane demonstrated comparable cellular proliferation, osteogenic gene expression, and osteogenic differentiation. Subsequently, in vivo studies were performed to implant eggshell microparticle-reinforced composite hydrogel scaffolds into critical-sized cranial defects in Sprague Dawley (SD) rats for up to 12 weeks to study bone regeneration. The in vivo results showed that the eggshell microparticle-based scaffolds supported an average bone volume of 60 mm3 and a bone density of 2000 HU 12 weeks post implantation. Furthermore, histological analyses of the explanted scaffolds showed that the eggshell microparticle-reinforced scaffolds permitted tissue infiltration and induced bone tissue formation over 12 weeks. The histology staining also indicated that these scaffolds induced significantly higher bone regeneration at 6 and 12 weeks as compared to the blank (no scaffold) and pristine gel scaffolds. The eggshell microparticle-reinforced scaffolds also supported significantly higher bone formation, remodeling, and vascularization over 6 and 12 weeks as confirmed by immunohistochemistry analysis. Collectively, our results indicated that eggshell microparticle-reinforced scaffolds facilitated significant bone regeneration in critical-sized cranial defects.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Olivia Gauntlett
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Tengfei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing 100069, China
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing 100069, China
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
8
|
Ahmed TAE, Wu L, Younes M, Hincke M. Biotechnological Applications of Eggshell: Recent Advances. Front Bioeng Biotechnol 2021; 9:675364. [PMID: 34295881 PMCID: PMC8291997 DOI: 10.3389/fbioe.2021.675364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The eggshell (ES) provides protection against pathogenic and physical insults while supplying essential metabolic and nutritional needs for the growing avian embryo. It is constituted mainly of calcium carbonate arranged as calcite crystals. The global chicken egg production in 2018 was over 76.7 million metric tons. In industrialized countries, about 30% of eggs are processed at breaker plants that produce liquid egg products and large quantities of solid ES waste. ES waste is utilized for a variety of low-value applications, or alternatively is disposed in landfill with associated economic and environmental burdens. The number of patents pertaining to ES applications has increased dramatically in recent years; of 673 patents granted in the last century, 536 (80%) were published in the last two decades. This review provides a snapshot of the most recent patents published between 2015 and 2020, with emphasis on different biotechnological applications of ES waste, and summarizes applications for biomedical, chemical, engineering, and environmental technologies. Biomedical technologies include the production of calcium lactate, calcium phosphate, and health-promoting products, while chemical technologies include plant growth promoters, food processing and production, and biodiesel oil catalysis along with active calcium, carbon, soluble proteins, organic calcium, and ultrafine calcium carbonate sources. Engineering technologies address material engineering and nanoparticle production, while environmental technologies pertain to production of biomass, solubilization of sludge as well as production of magnetic ES adsorbents and adsorption of heavy metals, organics, total nitrogen and fluoride, soil pollutants, and radioactive compounds. Although the number of ES-based patents has exponentially increased in the last decade, exploration of innovative top-down approaches and ES development as a physical platform are new endeavors that are expected to further increase the upscaling of ES waste exploitation.
Collapse
Affiliation(s)
- Tamer A. E. Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ling Wu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Manar Younes
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Vacaras S, Baciut G, Gheban D, Bran S, Colosi H, Toader S, Opris D, Kretschmer W, Manea A, Armencea G, Baciut M, Opris H, Mitre I, Hedesiu M, Dinu C. Engaging a polylactide copolymer in oral tissue regeneration: first validation of Suprathel ® for guided epithelial and osseous healing. J Med Life 2021; 14:181-197. [PMID: 34104241 PMCID: PMC8169152 DOI: 10.25122/jml-2021-0083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The present study investigated the capacity of Suprathel® (a copolymer membrane, so far validated for skin regeneration) to also regenerate oral tissue – mucosa and bone, by comparing this biomaterial, in a split-mouth rabbit model, to Mucoderm®, a xenogeneic collagen matrix certified for keratinized oral mucosa healing. The clinical reason behind this experimental animal model was to determine whether the benefits of this advanced skin regeneration product (Suprathel®) could be conveyed for future evaluation in clinical trials of oral tissue regeneration in humans. The outcomes of this study validated the use of Suprathel®, a terpolymer of polylactide with trimethylene carbonate and ε-caprolactone, for stimulation of oral epithelium and alveolar bone regeneration in rabbits. Both Suprathel® and Mucoderm® exhibited comparable results and the null hypothesis stating a comparable regenerating effect of these two materials could not be rejected.
Collapse
Affiliation(s)
- Sergiu Vacaras
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Morphological Sciences, Division of Pathoanatomy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horatiu Colosi
- Department of Medical Education, Division of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Septimiu Toader
- Center for Experimental Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daiana Opris
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Winfried Kretschmer
- Klinik fur Mund-, Kiefer- und Plastische Gesichtschirurgie, Alb Fils Kliniken GmbH, Goppingen, Baden-Wurttemberg, Germany
| | - Avram Manea
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horia Opris
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ileana Mitre
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Baláž M, Boldyreva EV, Rybin D, Pavlović S, Rodríguez-Padrón D, Mudrinić T, Luque R. State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry. Front Bioeng Biotechnol 2021; 8:612567. [PMID: 33585413 PMCID: PMC7873488 DOI: 10.3389/fbioe.2020.612567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Eggshell waste is among the most abundant waste materials coming from food processing technologies. Despite the unique properties that both its components (eggshell, ES, and eggshell membrane, ESM) possess, it is very often discarded without further use. This review article aims to summarize the recent reports utilizing eggshell waste for very diverse purposes, stressing the need to use a mechanochemical approach to broaden its applications. The most studied field with regards to the potential use of eggshell waste is catalysis. Upon proper treatment, it can be used for turning waste oils into biodiesel and moreover, the catalytic effect of eggshell-based material in organic synthesis is also very beneficial. In inorganic chemistry, the eggshell membrane is very often used as a templating agent for nanoparticles production. Such composites are suitable for application in photocatalysis. These bionanocomposites are also capable of heavy metal ions reduction and can be also used for the ozonation process. The eggshell and its membrane are applicable in electrochemistry as well. Due to the high protein content and the presence of functional groups on the surface, ESM can be easily converted to a high-performance electrode material. Finally, both ES and ESM are suitable for medical applications, as the former can be used as an inexpensive Ca2+ source for the development of medications, particles for drug delivery, organic matrix/mineral nanocomposites as potential tissue scaffolds, food supplements and the latter for the treatment of joint diseases, in reparative medicine and vascular graft producing. For the majority of the above-mentioned applications, the pretreatment of the eggshell waste is necessary. Among other options, the mechanochemical pretreatment has found an inevitable place. Since the publication of the last review paper devoted to the mechanochemical treatment of eggshell waste, a few new works have appeared, which are reviewed here to underline the sustainable character of the proposed methodology. The mechanochemical treatment of eggshell is capable of producing the nanoscale material which can be further used for bioceramics synthesis, dehalogenation processes, wastewater treatment, preparation of hydrophobic filters, lithium-ion batteries, dental materials, and in the building industry as cement.
Collapse
Affiliation(s)
- Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Elena V. Boldyreva
- Department of Solid State Chemistry, Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry Rybin
- Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
- Mezomax Inc., San Francisco, CA, United States
| | - Stefan Pavlović
- Department of Catalysis and Chemical Engineering, University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade, Serbia
| | | | - Tihana Mudrinić
- Department of Catalysis and Chemical Engineering, University of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Cordoba, Spain
| |
Collapse
|
11
|
The Influence of Eggshell on Bone Regeneration in Preclinical In Vivo Studies. BIOLOGY 2020; 9:biology9120476. [PMID: 33352877 PMCID: PMC7766478 DOI: 10.3390/biology9120476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary The aim of this study is to review the available information on the use of avian eggshell as bone regeneration material. Five databases were searched up to October 2020. Animal studies with a bone defect model using eggshell as a grafting material were included. Risk of bias and the quality of the papers were assessed. Overall, a total of 581 studies were included in the study, 187 after duplicate removal. Using the inclusion and exclusion criteria 167 records were further excluded. The full text of the remaining 20 articles was assessed for eligibility and included in the review. There were different methods of obtaining eggshell for grafting purposes. Eggshell is a biocompatible grafting material, with bone formation capabilities. It forms new bone similar to other products currently in use in clinical practice. It can be combined with other materials to enhance its proprieties. Eggshell is a promising biomaterial to be used in bone grafting procedures, though further research is needed. Abstract The aim of this study is to systemically review the available evidence on the in vivo behavior of eggshell as a guided bone regeneration substitute material. Five databases (PubMed, Cochrane, Web of Science, Scopus, EMBASE) were searched up to October 2020. In vivo animal studies with a bone defect model using eggshell as a grafting material were included. Risk of bias was assessed using SYRCLE tool and the quality assessment using the ARRIVE guidelines. Overall, a total of 581 studies were included in the study, 187 after duplicate removal. Using the inclusion and exclusion criteria 167 records were further excluded. The full text of the remaining 20 articles was assessed for eligibility and included in the qualitative and quantitative assessment synthesis. There were different methods of obtaining eggshell grafting materials. Eggshell is a biocompatible grafting material, with osteoconduction proprieties. It forms new bone similar to Bio-Oss and demineralized freeze-dried bone matrix. It can be combined with other materials to enhance its proprieties. Due to the high variability of the procedures, animals, production and assessment methods, no meta-analysis could be performed. Eggshell might be considered a promising biomaterial to be used in bone grafting procedures, though further research is needed.
Collapse
|