Li H, Xing H. Interleukin-35 Enhances Regulatory T Cell Function by Potentially Suppressing Their Transdifferentiation into a T Helper 17-Like Phenotype in Kawasaki Disease.
Immunol Invest 2023:1-16. [PMID:
37052682 DOI:
10.1080/08820139.2023.2201283]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Interleukin-35 (IL-35) modulates immune cell activity in inflammation and autoimmune disorders. However, its specific effects on regulatory T cells (Tregs) in Kawasaki disease remain ambiguous. We enrolled 37 patients with Kawasaki disease and 20 healthy controls in this study. The percentages of CD4+CD25+CD127dim/- Tregs and CD4+IL-17A+ T helper 17 (Th17) cells were determined via flow cytometry. Tregs were enriched and stimulated by recombinant IL-35. Immunosuppressive activity of Tregs was via co-culture with autologous CD4+CD25- T cells. Purified Tregs were cultured for Th17 polarization, and the influence of IL-35 on Tregs transdifferentiation into a Th17-like phenotype was determined. The percentage of Tregs was elevated in patients with Kawasaki disease and positively correlated with C-reactive protein levels. There was no significant difference in the percentage of Th17 cells between the two groups. IL-35 stimulation increased the percentage of Tregs in both groups, but decreased the percentage of Tregs Th17 cells in affected patients. IL-35 enhanced the immunosuppressive activity of Tregs in both groups, resulting in decreased cellular proliferation and increased IL-35 subunit mRNA relative levels in co-culture system. IL-35 did not affect the immune checkpoint molecule expression in Tregs, but inhibited the transdifferentiation of Tregs into a Th17-like phenotype in affected patients, indicating by the down-regulations of C-C motif chemokine receptor-4/6 expression, retinoid-related orphan nuclear receptor γt mRNA levels, and IL-17 secretion. IL-35 contributes to the immunosuppressive function of Tregs by inhibiting the cellular proliferation and transdifferentiation of Tregs into a Th17-like phenotype, which may be a protective mechanism against Kawasaki disease.
Collapse