1
|
Yilmaz E, Gul M. Effects of essential oils on heat-stressed poultry: A review. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38808374 DOI: 10.1111/jpn.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
While certain animal species are sensitive to heat stress, poultry particularly modern breeds, are more susceptible to high ambient temperatures. This has major implications for the poultry industry, as heat stress causes large financial losses. These economic losses will probably increase as a consequence of a predicted rise in global temperatures. Heat stress adversely affects various aspects of poultry, including physiological responses, growth and production performance, meat quality, egg quality, and reproductive activities. These effects occur through specific molecular and metabolic pathways. To mitigate the impacts of heat stress, it is crucial to go beyond administrative practices and implement dietary interventions during high ambient temperature. Such interventions aim to optimize the development of stressed bird species in terms of performance, health, and profitability. Essential oils have shown promising in mitigating the negative effects of heat stress and improved antioxidant status, growth and yield performance, as well as meat and egg quality in poultry. They actively participate in certain metabolic and molecular pathways that help to counteract the effects of heat stress. The article discusses the impacts of essential oil supplementation on the relationships between antioxidant enzyme activity, these molecular, and metabolic pathways, as well as various parameters such as growth and yield performance, and product quality heat-stressed poultry.
Collapse
Affiliation(s)
- Emre Yilmaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Mehmet Gul
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Bohler MW, Chowdhury VS, Cline MA, Gilbert ER. Heat Stress Responses in Birds: A Review of the Neural Components. BIOLOGY 2021; 10:biology10111095. [PMID: 34827087 PMCID: PMC8614992 DOI: 10.3390/biology10111095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Heat stress is one of the major environmental conditions causing significant losses in the poultry industry and having negative impacts on the world's food economy. Heat exposure causes several physiological impairments in birds, including oxidative stress, weight loss, immunosuppression, and dysregulated metabolism. Collectively, these lead not only to decreased production in the meat industry, but also decreases in the number of eggs laid by 20%, and overall loss due to mortality during housing and transit. Mitigation techniques have been discussed in depth, and include changes in air flow and dietary composition, improved building insulation, use of air cooling in livestock buildings (fogging systems, evaporation panels), and genetic alterations. Most commonly observed during heat exposure are reduced food intake and an increase in the stress response. However, very little has been explored regarding heat exposure, food intake and stress, and how the neural circuitry responsible for sensing temperatures mediate these responses. That thermoregulation, food intake, and the stress response are primarily mediated by the hypothalamus make it reasonable to assume that it is the central hub at which these systems interact and coordinately regulate downstream changes in metabolism. Thus, this review discusses the neural circuitry in birds associated with thermoregulation, food intake, and stress response at the level of the hypothalamus, with a focus on how these systems might interact in the presence of heat exposure.
Collapse
Affiliation(s)
- Mark W. Bohler
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.W.B.); (M.A.C.)
| | - Vishwajit S. Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.W.B.); (M.A.C.)
| | - Elizabeth R. Gilbert
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.W.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-(540)-231-4750
| |
Collapse
|
3
|
Ayo JO, Ogbuagu NE. Heat stress, haematology and small intestinal morphology in broiler chickens: insight into impact and antioxidant-induced amelioration. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- J. O. Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - N. E. Ogbuagu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Hwang KE, Claus JR. Characterization of Carcass Color Differences Between Hens (Small Birds) and Meat-Type Male Pheasants (Large Birds). MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The underlying changes in hen carcass color upon freezing were compared with the color of meat-type male pheasants upon freezing. Chemical and physical assessments of these two pheasant types (n=5) and the effects of different chilling methods on hen carcasses (n=10) were evaluated. The results showed that hen carcasses exhibited more red pigmentation (myoglobin, hemoglobin), as well as significantly higher pH values and redness, than the carcasses from meat-type pheasants. The moisture content was higher in hens than in meat-type pheasants, especially in the skin. The intermediate fiber (IIA) type was the only type found in the pectoralis major muscle, regardless of pheasant type. Chilling method significantly changed the color attributes of the hen carcass. Immersion chilling decreased skin redness (less pigmentation and Commission Internationale de l ́Eclairage [CIE] a*); the breast meat was less red than that from the chilling-in-a-bag condition. The skin had substantially higher levels of red pigmentation than the breast muscles, irrespective of the pheasant type and chilling method (P < 0.05). Our findings suggest that the more intense red appearance may be related to a combination of greater residual hemoglobin levels and higher pH within the skin. The greater moisture content of the skin may have facilitated the development of greater transparency to the darker, more red breast muscle.
Collapse
Affiliation(s)
- Ko-Eun Hwang
- University of Wisconsin–Madison Department of Animal and Dairy Sciences
| | - James R. Claus
- University of Wisconsin–Madison Department of Animal and Dairy Sciences
| |
Collapse
|
5
|
Andretta I, Kipper M, Schirmann GD, Franceschina CS, Ribeiro AML. Modeling the performance of broilers under heat stress. Poult Sci 2021; 100:101338. [PMID: 34358951 PMCID: PMC8350525 DOI: 10.1016/j.psj.2021.101338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
A meta-analysis was developed to model performance depression in heat stress (HS), to analyze the influence of HS type (cyclic or constant), and to assess the correlation between dietary electrolyte balance (DEB) and HS in broilers. Two databases (Dat) with performance and temperature were constructed (initial phase – up to 21 d of age – 14 articles, 7,667 animals, average replicate number treatment-ARN/T, 5 and growing phase – over 21 d of age – 74 articles and 25,145 broilers, ARN/T, 7). The criteria for article selection were (1) experiments using at least 2 temperatures (thermoneutral and high temperature); (2) results of ADFI and ADG; (3) feed and water ad libitum during the experiment. Each treatment was classified as cyclic or constant HS and the HS group response was calculated relative to the thermoneutral group. Performance was evaluated as raw data or as relativized information (indicated as “HS effect or ≠”), expressed as a percentage of the difference between results. The models to predict “HS effect” showed that for the initial phase, only ADG was influenced by HS, while for the grower phase, prediction equations were created for ADFI and ADG. Considering the simplest models, there was a reduction of 1.4% in ADFI and 2.1% in ADG for each unit (°C) above the upper critical temperature for broilers older than 21 d. Feed conversion (FC) was not affected by HS in any of the studied phases. Constant HS proved to be more negative than cyclic HS to broiler performance after 21 d of age. The relation between DEB and performance of broilers under HS was analyzed considering broilers over 21 d of age, and very weak correlations were observed. It was concluded that HS affects broilers over 21 d more, although FC is not affected. ADFI is the most important variable affected by HS and the relation between the DEB of the diet and HS is very weak. The empirical models generated in this study accurately predicted ADG and ADFI of broilers exposed to HS and can be used to minimize those effects on poultry production.
Collapse
Affiliation(s)
- I Andretta
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Brazil
| | - M Kipper
- Elanco Brasil, São Paulo, 04703-002, Brazil
| | - G D Schirmann
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Brazil
| | - C S Franceschina
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Brazil
| | - A M L Ribeiro
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Brazil.
| |
Collapse
|
6
|
Kpomasse CC, Oke OE, Houndonougbo FM, Tona K. Broiler production challenges in the tropics: A review. Vet Med Sci 2021; 7:831-842. [PMID: 33559980 PMCID: PMC8136938 DOI: 10.1002/vms3.435] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Under tropical climate, broiler production is encumbered by several constraints which make it difficult for them to attain their genetic potential. The scarcity and high price of poultry feed and veterinary services and the harsh environmental conditions with respect to thermal stress are some of the challenges that hinder optimal growth of the birds. Limited availability of feedstuffs, including crucial feed ingredients like maize and oil seedcakes, is an important challenge to the sector, since feed still represents a major cost of producing broiler chickens. Additionally, the problem of climate change, which has become a global concern, is the main problem in broiler production under hot and humid climate. Under high ambient temperature, feed intake decreases, carbohydrates metabolism and protein synthesis efficiency are disturbed. Lipid utilization is lower and glucose or insulin homeostasis is altered while fat deposition and oxidative stress increases. Several strategies are used to ameliorate the effect of heat stress in poultry. The objective of this review was to summarize the challenge in broiler production under hot and humid climate and different approaches to fight heat stress in poultry.
Collapse
Affiliation(s)
- Cocou Claude Kpomasse
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| | - Oyegunle Emmanuel Oke
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo.,Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Kokou Tona
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| |
Collapse
|
7
|
De Grande A, Ducatelle R, Delezie E, Rapp C, De Smet S, Michiels J, Haesebrouck F, Van Immerseel F, Leleu S. Effect of vitamin E level and dietary zinc source on performance and intestinal health parameters in male broilers exposed to a temperature challenge in the finisher period. J Anim Physiol Anim Nutr (Berl) 2020; 105:777-786. [PMID: 33377569 DOI: 10.1111/jpn.13492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
The objective of this study was to evaluate the interaction of zinc source (ZnSO4 vs. zinc amino acid complex) and vitamin E level (50 IU vs. 100 IU) on performance and intestinal health of broilers exposed to a temperature challenge in the finisher period. A total of 1224 day old male Ross 308 broilers were randomly distributed among 4 dietary treatments (9 replicates per treatment). Dietary treatments were organized in a 2 × 2 factorial arrangement: two sources of zinc, 60 mg/kg of Zn as ZnSO4 .7H2 O or 60 mg/kg of Zn as zinc amino acid complexes (ZnAA) combined with two levels of vitamin E (50 or 100 IU/kg). Zinc and vitamin E were added to a wheat/rye-based diet that was designed to create a mild nutritional challenge. From day 28 until day 36 (finisher period), all birds were subjected to chronic cyclic high temperatures (32°C ± 2°C and RH 55-65% for 6 h daily). The combination of ZnAA and 50 IU/kg of vitamin E improved weight gain in the starter (day 0-10), finisher (day 28-36) and overall period (day 0-36) and feed conversion ratio in the starter (day 0-10) and finisher phase (day 28-36). Providing Zn as ZnAA significantly improved villus length and villus/crypt ratio in the starter, grower and finisher period and decreased infiltration of T-lymphocytes and ovotransferrin leakage in the finisher period. In conclusion, providing broilers with a diet supplemented with ZnAA and a vitamin E level of 50 IU/kg, resulted in better growth performance as compared to all other dietary treatments. Interestingly, under the conditions of this study, positive effects of ZnAA on performance did not occur when vitamin E was supplemented at 100 IU/kg in feed. Moreover, providing zinc as zinc amino acid complex improved intestinal health.
Collapse
Affiliation(s)
- Annatachja De Grande
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium.,Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Evelyne Delezie
- Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Merelbeke, Belgium
| | | | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Saskia Leleu
- Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Merelbeke, Belgium
| |
Collapse
|
8
|
Effects of dietary energy levels on performance and carcass yield of 2 meat-type broiler lines housed in hot and cool ambient temperatures. Poult Sci 2020; 100:100885. [PMID: 33516475 PMCID: PMC7936163 DOI: 10.1016/j.psj.2020.11.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Two meat-type broiler lines, line A and line B were fed experimental diets from 22-42 d with objectives to determine the effects of dietary metabolizable energy (ME) levels on feed intake (FI), performance, body composition, and processing yield as affected by environmental grow-out temperatures. Two thousand fifty male chicks from line A and 2,050 male chicks from line B were reared in 90-floor pens, 45 chicks per pen utilizing primary breeder nutrition and husbandry guidelines for starter (1-10 d) and grower (11-21 d) phases. Experimental finisher diets consisted of 5 increasing levels of apparent nitrogen corrected ME (2,800, 2,925, 3,050, 3,175, and 3,300 kcal/kg set at 19.5% crude protein and 1.0% dLys at each level) to represent 80, 90, 100, 110, and 120% ME of Evonik AminoChick energy level giving 2 × 5 factorial design and were fed from 22-42 d. All other amino acid levels in diets were formulated to a fixed ratio of dLys level. There were nine replicate pens for each diet and each line. The experiment was conducted twice-once in hot season (barn averages: 77.55 ˚F and 86.04% RH) and another in cool season (barn averages: 69.91 ˚F and 63.98% RH) of the year. Results showed that FI and feed conversion ratios (FCR) decreased (P < 0.05) linearly (R2 = 0.9) by 61.25 g and 0.073 units for every 10% increase in dietary ME for combined analysis of lines and seasons. The % fat mass of total body mass increased by 0.57%, whereas % protein mass decreased by 0.21% across ME levels (R2 > 0.9). However, there was no difference (P > 0.05) in % weights (of live weight) for wings, breast filet, tenders, or leg quarters across ME levels for both lines except % fat pad that increased (P < 0.05) by 0.20% for each 10% increment in dietary ME level. Line B had higher cumulative FI, BW gain, % lean, and protein mass of body mass than line A in hot season (P < 0.05). Feed intake was not different between lines in cool season (P > 0.05), whereas higher BW and improved FCR were observed for line A. Line A had higher % fat mass in both seasons. In summary, performance and yield results as affected by dietary ME levels were line specific and were affected by grow-out seasons. The optimal dietary ME level for the ME range studied (2,800-3,000 kcal/kg) at a constant recommended amino acid level lies in determining the best performance and profitability indices by taking into account the grow-out production inputs and processing yield outputs.
Collapse
|
9
|
Wu QJ, Liu N, Wu XH, Wang GY, Lin L. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers. Poult Sci 2018; 97:2675-2683. [PMID: 29788452 DOI: 10.3382/ps/pey123] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the protective effect of glutamine (Gln) on the intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers exposed to high ambient temperature. Three-hundred-sixty 21-d-old Arbor Acres broilers (half male and half female) were randomly allocated to 4 treatment groups in a completely randomized design, each of which included 6 replicates with 15 birds per replicate, for 21 d. The 4 treatment groups were as follows: the control group, in which birds were kept in a thermoneutral room at 22 ± 1°C (no stress, NS; fed a basal diet); the heat stress group (36 ± 1°C for 10 h/d from 08:00 to 18:00 h and 22 ± 1°C for the remaining time, heat stress (HT); fed a basal diet); and heat stress + Gln group (0.5 and 1.0% Gln, respectively). Compared to the NS group, broilers in the HT group had lower villus height (P < 0.05), higher crypt depth (P < 0.05), higher D-lactic acid and diamine oxidase (DAO) activity (P < 0.05), higher soluble intercellular adhesion molecule-1 (sICAM-1) concentration (P < 0.05), higher tumor necrosis factor (TNF)-α/interleukin (IL)-10 (P < 0.05), and lower tight junction protein expression levels (P < 0.05). Compared with birds in the HT, birds in the HT + Gln group exhibited increased villus height (P < 0.05), decreased D-lactate and DAO activity (P < 0.05), decreased sICAM-1 concentration (P < 0.05), and mediate the secretion of cytokines (P < 0.05), as well as increased zonula occludens-1 (ZO-1), claudin-1, and occludin mRNA expression levels (P < 0.05). In conclusion, these results indicate that supplementation with Gln was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by promoting epithelial cell proliferation and renewal, modifying the function of the intestinal mucosa barrier, and regulating the secretion of cytokines.
Collapse
Affiliation(s)
- Q J Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - N Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - X H Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - G Y Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - L Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| |
Collapse
|
10
|
Luo J, Song J, Liu L, Xue B, Tian G, Yang Y. Effect of epigallocatechin gallate on growth performance and serum biochemical metabolites in heat-stressed broilers. Poult Sci 2018; 97:599-606. [DOI: 10.3382/ps/pex353] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/28/2017] [Indexed: 02/05/2023] Open
|