1
|
Jin J, Qi L, Shen S, Yang S, Yuan H, Wang A. Violet LED light-activated MdHY5 positively regulates phenolic accumulation to inhibit fresh-cut apple fruit browning. HORTICULTURE RESEARCH 2025; 12:uhae276. [PMID: 39830309 PMCID: PMC11739620 DOI: 10.1093/hr/uhae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/21/2024] [Indexed: 01/22/2025]
Abstract
Fresh-cut fruit browning severely affects the appearance of fruit. Light treatment can effectively inhibit fresh-cut apple fruit browning, but the regulatory mechanism remains unknown. Here, we discovered that violet LED (Light-Emitting-Diode) light treatment significantly reduced fresh-cut apple fruit browning. Metabolomic analysis revealed that violet LED light treatment enhanced the phenolic accumulation of fresh-cut apple fruit. Transcriptomic analysis showed that the expression of phenolic degradation genes POLYPHENOL OXIDASE (MdPPO) and PEROXIDASE (MdPOD) was reduced, and the expression of phenolic synthesis gene PHENYLALANINE AMMONIA LYASE (MdPAL) was activated by violet LED light treatment. Moreover, two ELONGATED HYPOCOTYL 5 (MdHY5 and MdHYH) transcription factors involved in light signaling were identified. The expression of MdHY5 and MdHYH was activated by violet LED light treatment. Violet LED light treatment no longer inhibited fresh-cut apple fruit browning in MdHY5- or MdHYH- silenced fruit. Further experiments revealed that MdHY5 and MdHYH suppressed MdPPO and MdPOD expression and promoted MdPAL expression by binding to their promoters. In addition, MdHY5 and MdHYH bound to each other's promoters and enhanced their expression. Overall, our findings revealed that violet LED light-activated MdHY5 and MdHYH formed a positive transcriptional loop to regulate the transcription of MdPPO, MdPOD, and MdPAL, which in turn inhibited the degradation of phenolics and promoted the synthesis of phenolics, thus inhibiting fresh-cut apple fruit browning. These results provide a theoretical basis for improving the appearance and quality of fresh-cut apple fruit.
Collapse
Affiliation(s)
- Juntong Jin
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Liyong Qi
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shurong Shen
- Liaoning Agricultural Vocational and Technical College, Xiongyue 115009, China
| | - Shuran Yang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Xu Q, Cai J, Ma L, Tan B, Li Z, Sun L. Custom-Developed Reflection-Transmission Integrated Vision System for Rapid Detection of Huanglongbing Based on the Features of Blotchy Mottled Texture and Starch Accumulation in Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:616. [PMID: 36771700 PMCID: PMC9921774 DOI: 10.3390/plants12030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB) is a highly contagious and devastating citrus disease that causes huge economic losses to the citrus industry. Because it cannot be cured, timely detection of the HLB infection status of plants and removal of diseased trees are effective ways to reduce losses. However, complex HLB symptoms, such as single HLB-symptomatic or zinc deficiency + HLB-positive, cannot be identified by a single reflection imaging method at present. In this study, a vision system with an integrated reflection-transmission image acquisition module, human-computer interaction module, and power supply module was developed for rapid HLB detection in the field. In reflection imaging mode, 660 nm polarized light was used as the illumination source to enhance the contrast of the HLB symptoms in the images based on the differences in the absorption of narrow-band light by the components within the leaves. In transmission imaging mode, polarization images were obtained in four directions, and the polarization angle images were calculated using the Stokes vector to detect the optical activity of starch. A step-by-step classification model with four steps was used for the identification of six classes of samples (healthy, HLB-symptomatic, zinc deficiency, zinc deficiency + HLB-positive, magnesium deficiency, and boron deficiency). The results showed that the model had an accuracy of 96.92% for the full category of samples and 98.08% for the identification of multiple types of HLB (HLB-symptomatic and zinc deficiency + HLB-positive). In addition, the classification model had good recognition of zinc deficiency and zinc deficiency + HLB-positive samples, at 92.86%.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Correspondence: (J.C.); (L.S.)
| |
Collapse
|
3
|
Lu T, Song Y, Yu H, Li Q, Xu J, Qin Y, Zhang G, Liu Y, Jiang W. Cold Stress Resistance of Tomato ( Solanum lycopersicum) Seedlings Is Enhanced by Light Supplementation From Underneath the Canopy. FRONTIERS IN PLANT SCIENCE 2022; 13:831314. [PMID: 35498645 PMCID: PMC9039533 DOI: 10.3389/fpls.2022.831314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Adverse environmental conditions, such as low temperature (LT), greatly limit the growth and production of tomato. Recently, light-emitting diodes (LEDs) with specific spectra have been increasingly used in horticultural production facilities. The chosen spectrum can affect plant growth, development, and resistance, but the physiological regulatory mechanisms are largely unknown. In this study, we investigated the effects of LED light supplementation (W:B = 2:1, light intensity of 100 μmol⋅m-2⋅s-1, for 4 h/day from 9:00 to 13:00) from above and below the canopy on tomato resistance under sub-LT stress (15/8°C). The results showed that supplemental lighting from underneath the canopy (USL) promoted the growth of tomato seedlings, as the plant height, stem diameter, root activity, and plant biomass were significantly higher than those under LT. The activity of the photochemical reaction center was enhanced because of the increase in the maximal photochemical efficiency (F v /F m ) and photochemical quenching (qP), which distributed more photosynthetic energy to the photochemical reactions and promoted photosynthetic performance [the maximum net photosynthetic rate (Pmax) was improved]. USL also advanced the degree of stomatal opening, thus facilitating carbon assimilation under LT. Additionally, the relative conductivity (RC) and malondialdehyde (MDA) content were decreased, while the soluble protein content and superoxide dismutase (SOD) activity were increased with the application of USL under LT, thereby causing a reduction in membrane lipid peroxidation and alleviation of stress damage. These results suggest that light supplementation from underneath the canopy improves the cold resistance of tomato seedlings mainly by alleviating the degree of photoinhibition on photosystems, improving the activity of the photochemical reaction center, and enhancing the activities of antioxidant enzymes, thereby promoting the growth and stress resistance of tomato plants.
Collapse
Affiliation(s)
- Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangfan Song
- College of Horticulture, Xinjiang Agricultural University, Ürümqi, China
- Natural Resources Bureau of Hutubi County in Xinjiang Province, Changji, China
| | - Hongjun Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingcheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Ürümqi, China
| | - Guanhua Zhang
- Agriculture and Animal Husbandry Comprehensive Inspection and Testing Center of Chifeng, Chifeng, China
| | - Yuhong Liu
- Tibet Academy of Agriculture and Animal Husbandry Sciences Vegetable Research Institute, Lhasa, China
| | - Weijie Jiang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Cioć M, Dziurka M, Pawłowska B. Changes in Endogenous Phytohormones of Gerbera jamesonii Axillary Shoots Multiplied under Different Light Emitting Diodes Light Quality. Molecules 2022; 27:1804. [PMID: 35335168 PMCID: PMC8950344 DOI: 10.3390/molecules27061804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022] Open
Abstract
Light quality is essential in in vitro cultures for morphogenesis process. Light emitting diodes system (LED) allows adjustment as desired and the most appropriate light spectrum. The study analyzed the influence of different LED light quality on the balance of endogenous phytohormones and related compounds (PhRC) in in vitro multiplied axillary shoots of Gerbera jamesonii. Over a duration of 40 days, the shoots were exposed to 100% red light, 100% blue light, red and blue light at a 7:3 ratio with control fluorescent lamps. Every 10 days plant tissues were tested for their PhRC content with the use of an ultra-high performance liquid chromatography (UHPLC). Shoots' morphometric features were analyzed after a multiplication cycle. We identified 35 PhRC including twelve cytokinins, seven auxins, nine gibberellins, and seven stress-related phytohormones. Compounds content varied from 0.00052 nmol/g to 168.15 nmol/g of dry weight (DW). The most abundant group were stress-related phytohormones (particularly benzoic and salicylic acids), and the least abundant were cytokinins (about 370 times smaller content). LED light did not disturb the endogenous phytohormone balance, and more effectively mitigated the stress experienced by in vitro grown plants than the fluorescent lamps. The stress was most effectively reduced under the red LED. Red and red:blue light lowered tissue auxin levels. Blue LED light lowered the shoot multiplication rate and their height, and induced the highest content of gibberellins at the last stage of the culture.
Collapse
Affiliation(s)
- Monika Cioć
- Department of Ornamental Plants and Garden Art, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland
| | - Michał Dziurka
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Bożena Pawłowska
- Department of Ornamental Plants and Garden Art, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland
| |
Collapse
|
5
|
Khlebnikova DA, Efanova EM, Danilova NA, Shcherbakova YV, Rivera Sidorova I. Flavonoid Accumulation in an Aseptic Culture of Summer Savory (Satureja hortensis L.). PLANTS 2022; 11:plants11040533. [PMID: 35214866 PMCID: PMC8875525 DOI: 10.3390/plants11040533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Summer savory (Satureja hortensis L.) is a medicinal and aromatic plant of the Lamiaceae family, a source of valuable secondary metabolites (monoterpenoids, rosmarinic acid, flavonoids). For this paper, flavonoid accumulation in an aseptic culture of summer savory was determined by using a colorimetric method. The organ specificity of flavonoid accumulation in aseptic plants was revealed: In leaves (8.35 ± 0.17 mg/g FW), flower buds (7.55 ± 0.29 mg/g FW), and calyx (5.27 ± 0.28 mg/g FW), flavonoids accumulated in significantly higher amounts than in stems (1.50 ± 0.22 mg/g FW) and corolla (0.78 ± 0.12 mg/g FW). We found that primary callus tissue formed from cotyledon and hypocotyl explants retains the ability to synthesize flavonoids at deficient levels (0.50 ± 0.09 mg/g FW and 0.44 ± 0.11 mg/g FW, respectively), that remained stable throughout six subcultures. Placing the callus tissue in monochrome lighting conditions with blue, green, and red light-emitting diode (LED) lamps leads to morphological changes in the tissue and decreased flavonoid accumulation compared to fluorescent lamps.
Collapse
|
6
|
Pulsed LED-Lighting as an Alternative Energy Savings Technique for Vertical Farms and Plant Factories. ENERGIES 2021. [DOI: 10.3390/en14061603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Different strategies are reported in the literature for energy saving in Closed Plant Production Systems (CPPS). However, not reliable evidences about energy consumption with the use of pulsed LED light technique in lighting system available in Plant Factory and Vertical Farm. In this work, three key points to determine the effects of pulsed LED light versus continuous LED light are presented: (1) A mathematical model and its practical application for stabilizing the energy equivalence using LED light in continuous and pulsed mode in different light treatments. (2) The quantum efficiency of the photosystem II was used to determine positive and/or negative effects of the light operating mode (continuous or pulsed) on chili pepper plants (Capsicum annuum var. Serrano). (3) Evaluation of energy consumption with both operation modes using ten recipes from the literature to grow plants applied in Closed Plant Production Systems, different Photosynthetic Photon Flux Density at 50, 110, and 180 µmol m−2 s−1, Frequencies at 100, 500, and 1000 Hz, and Duty Cycles of 40, 50, 60, 70, 80, and 90%. The results show no significant statistical differences between the operation modes (continuous and pulsed LED light). For each light recipe analyzed, a pulsed frequency and a duty cycle were obtained, achieving significant energy savings in every light intensity. The results can be useful guide for real-life applications in CPPS.
Collapse
|
7
|
Cao L, Li P, Cui J, Wang X, Yao Y, Zhang M, Zheng M, Yang Z, Suo H, Wang Z. Achieving the potential multifunctional near-infrared materials Ca 3In 2-x Ga x Ge 3O 12:Cr 3+ using a solid state method. RSC Adv 2021; 11:10043-10053. [PMID: 35423516 PMCID: PMC8695478 DOI: 10.1039/d1ra00682g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Near-infrared spectroscopy is developing rapidly in the fields of human detection and food analysis due to its fast response and non-invasive characteristics. Herein, we report the novel near-infrared garnet-type Ca3In2Ge3O12:xCr3+ and Ca3In2-x Ga x Ge3O12:0.07Cr3+ phosphors, in which there are two crystallographic sites (CaO8, InO6) that can be substituted by Cr3+, and cation regulation engineering for In3+ is utilized to tune the luminescence properties. Under the 480 nm excitation, the Ca3In2Ge3O12:xCr3+ phosphor emits a broad spectrum at 650-1150 nm, which matches well with the first biological window. The concentration quenching mechanism and luminescence mechanism of Ca3In2Ge3O12:xCr3+ were studied and the site assignment of the two luminescence centers was discussed using low temperature spectra and fluorescence decay curves. The application performance of the phosphor was improved by introducing Ga3+ to substitute for In3+, and the blue shift of nearly 50 nm was explained by crystal field and nephelauxetic effects. At the same time, a 24% increase in the activation energy of thermal quenching of phosphors was obtained, which has been analyzed using the mechanism of phonon transition and the change of structural rigidity. Thus, the near-infrared emitting Ca3In0.2Ga1.8Ge3O12:0.07Cr3+ phosphor was obtained, which has lower cost, higher emission intensity, and much better thermal stability, spreading the application of phosphors in plant far red light illumination, human body detection, and spectral conversion technology of silicon-based solar cells. Simultaneously, an example of a near-infrared plant illumination experiment is given, demonstrating that a cation substitution strategy based on crystal field control could be applied to tune spectral distribution and develop novel potential phosphors for practical optical application.
Collapse
Affiliation(s)
- Lingwei Cao
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Panlai Li
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Jia Cui
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Xuejiao Wang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Yao Yao
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Mengya Zhang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Mingjie Zheng
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Zhibin Yang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Hao Suo
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| | - Zhijun Wang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University Baoding 071002 China
| |
Collapse
|
8
|
Meng L, Mestdagh H, Ameye M, Audenaert K, Höfte M, Van Labeke MC. Phenotypic Variation of Botrytis cinerea Isolates Is Influenced by Spectral Light Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:1233. [PMID: 32903526 PMCID: PMC7438557 DOI: 10.3389/fpls.2020.01233] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 05/23/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, displays a high degree of phenotypic diversity. Light emitting diodes (LEDs) with specific light spectrum are increasingly used as lighting resource for plant greenhouse production. The chosen light spectrum can also have an effect on the pathogens in this production system. In this study, we investigated the phenological diversity in 15 B. cinerea isolates upon different light treatments. Daylight, darkness, and LED lights with different wavelengths (white, blue, red, blue+red) were chosen as treatments. The 15 Botrytis isolates differed in their mycelial growth rate, conidia production, and sclerotia formation. Light quality had a limited effect on growth rate. All isolates sporulated under daylight treatment, red light resulted in lower sporulation, while white, blue, and blue+red light inhibited sclerotia formation in all isolates, and sporulation in most, but not all isolates. Pathogenicity of the Botrytis isolates was studied on 2-week-old strawberry (Fragaria × ananassa 'Elsanta') leaves grown under white, blue, and red LED lights. The isolates differed in virulence on strawberry leaves, and this was positively correlated to oxalic acid production by B. cinerea in vitro. Red LED light improved leaf basal resistance to all the tested Botrytis isolates. Blue light pretreatment resulted in decreased leaf resistance to some isolates. Furthermore, we used image analysis to quantify the virulence of the different Botrytis isolates based on changes in photosynthetic performance of the strawberry leaves: chlorophyll fluorescence (Fv/Fm), chlorophyll index (ChlIdx) and anthocyanin content (modified anthocyanin reflection index, mAriIdx). Fv/Fm showed a strong negative correlation with disease severity and can be an indicator for the early detection of gray mold on strawberry leaves.
Collapse
|
9
|
Usman H, Ullah MA, Jan H, Siddiquah A, Drouet S, Anjum S, Giglioli-Guviarc’h N, Hano C, Abbasi BH. Interactive Effects of Wide-Spectrum Monochromatic Lights on Phytochemical Production, Antioxidant and Biological Activities of Solanum xanthocarpum Callus Cultures. Molecules 2020; 25:E2201. [PMID: 32397194 PMCID: PMC7248882 DOI: 10.3390/molecules25092201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Solanum xanthocarpum is considered an important traditional medicinal herb because of its unique antioxidant, and anti-diabetic, anti-aging, and anti-inflammatory potential. Because of the over exploitation linked to its medicinal properties as well as destruction of its natural habitat, S. xanthocarpum is now becoming endangered and its supply is limited. Plant in vitro culture and elicitation are attractive alternative strategies to produce biomass and stimulate biosynthesis of medicinally important phytochemicals. Here, we investigated the potential influence of seven different monochromatic light treatments on biomass and secondary metabolites accumulation in callus culture of S. xanthocarpum as well as associated biological activities of the corresponding extracts. Among different light treatments, highest biomass accumulation was observed in white light-treated callus culture. Optimum accumulation of total flavonoid contents (TFC) and total phenolic contents (TPC) were observed in callus culture kept under continuous white and blue light respectively than control. Quantification of phytochemicals through HPLC revealed that optimum production of caffeic acid (0.57 ± 0.06 mg/g DW), methyl-caffeate (17.19 mg/g ± 1.79 DW), scopoletin (2.28 ± 0.13 mg/g DW), and esculetin (0.68 ± 0.07 mg/g DW) was observed under blue light callus cultures. Compared to the classic photoperiod condition, caffeic acid, methyl-caffeate, scopoletin, and esculetin were accumulated 1.7, 2.5, 1.1, and 1.09-folds higher, respectively. Moreover, high in vitro cell free antioxidant, anti-diabetic, anti-aging, and anti-inflammatory activities were closely associated with the production of these secondary metabolites. These results clearly showed the interest to apply multispectral light as elicitor of in vitro callus cultures S. xanthocarpum to promote the production of important phytochemicals, and allow us to propose this system as an alternative for the collection of this endangered species from the wild.
Collapse
Affiliation(s)
- Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Aisha Siddiquah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan;
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| |
Collapse
|
10
|
Light emitting diode (LED) as a source of monochromatic light: a novel lighting approach for behaviour, physiology and welfare of poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933914000592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Ajdanian L, Babaei M, Aroiee H. The growth and development of cress ( Lepidium sativum) affected by blue and red light. Heliyon 2019; 5:e02109. [PMID: 31388573 PMCID: PMC6667670 DOI: 10.1016/j.heliyon.2019.e02109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022] Open
Abstract
Today, the use of light emitting diodes (LEDs) are rapidly increasing in horticulture industry as a result of technological advancements. Lighting systems play an important role in the commercial greenhouse productions. As an artificial source of light, LED lamps can contribute to the better and faster growth of horticulture products such as vegetables grown in greenhouses. In this study, the effects of red and blue light spectrums were implemented and performed as a pot experiment under the cultivation-without-soil condition in greenhouse based on a completely random plan with 3 lighting treatments including natural light (control), 60% red light +40% blue light (60R:40B), and 90% red light +10% blue light (90R:10B), repeated 3 times. The results showed that the application of blue and red lights affected the fresh and dry weights of cress as well as its biomass, demonstrating a considerable increase compared to the plants grown under natural sunlight condition. In this regard, the fresh weight of the plant under the 60R:40B treatment had 57.11% increase compared to the natural light treatment. Compared to the control sample, the dry weight had 26.06% increase under 90R:10B treatment. The highest extent of biomass was observed under the 60R:40B lighting treatment with a value of 1.51 (g per kg dry weight of the plant), which was a 68.87% increase compared to the natural light treatment. Under the 60R:40B treatment, cress had its highest length at 19.76 cm. Under the similar treatment, the cress leaf had a total area of 56.78 cm2 which was the largest. The stem diameter and the number of leaves under the 60R:40B treatment had their highest values at 3.28 mm and 8.16, respectively. Accordingly, a growing trend was observed with 56.7 and 61.27% increase compared to the control treatment. Furthermore, the biochemical traits of cress, the amount of a, b and total chlorophyll, the amount of anthocyanin and phenolic contents under the application of red and blue light were at their highest values compared to the control treatment. The highest amount of chlorophyll was observed under 60R:40B treatment as 15.09 mg g−1 FW leaf. Moreover, the phenolic contents and the amount of anthocyanin were of significant difference at 1% level of likelihood compared to the control treatment. Therefore, the vegetative growth of cress was substantially affected by red and blue lights, resulting in the enhancement of the plant's biochemical features compared to control condition via adjusting the lighting quality and impacts of each red and blue light spectrum on their specific receptors. As a result, the presence of both lighting spectrums is essential for expanding and increasing the quality of the plant. At the large scale, this technology is capable of improving the commercial greenhouse production performance while helping farmers achieve maximum products. This particular combination of lights is one of the beneficial features of LED lighting systems intended for different types of commercial greenhouse productions, especially the valuable greenhouse products.
Collapse
Affiliation(s)
- Ladan Ajdanian
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Babaei
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Hossein Aroiee
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Long J, Yuan X, Ma C, Du M, Ma X, Wen Z, Ma R, Wang Y, Cao Y. Strongly enhanced luminescence of Sr4Al14O25:Mn4+phosphor by co-doping B3+and Na+ions with red emission for plant growth LEDs. RSC Adv 2018; 8:1469-1476. [PMID: 35540872 PMCID: PMC9077104 DOI: 10.1039/c7ra11967d] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022] Open
Abstract
Development of a more cost-effective radiation source for use in plant-growing facilities would be of significant benefit for commercial crop production applications. A series of co-doped B3+ and Na+ ions Sr4Al14O25:Mn4+ inorganic luminescence materials which can be used for plant growth were successfully synthesized through a conventional high-temperature solid-state reaction. Powder X-ray diffraction was used to confirm the crystal structure and phase purity of the obtained samples. Then scanning electron microscopy elemental mapping was undertaken to characterize the distribution of the doped ions. Detail investigations on the photoluminescence emission and excitation spectra revealed that emission intensity of tetravalent manganese ions can be well enhanced by monovalent sodium ions and trivalent boron ions under near-ultraviolet and blue excitation. Additionally, crystal field parameters and energies of states are calculated and discussed in detail. Particularly we achieve a photoluminescence internal quantum yield as high as 60.8% under 450 nm blue light excitation for Sr4Al14O25:Mn4+, Na+, B3+. Therefore, satisfactory luminescence properties make these phosphors available to LEDs for plant growth. (a) Emission spectrum of LEDs fabricated with 445 nm blue chip and Sr2Si5N8:Eu2+ red phosphor. (b) Emission spectrum of LEDs fabricated with 445 nm blue chip and Sr4Al14O25:Mn4+ phosphor. (c and d) Absorption spectrum of chlorophyll-b and chlorophyll-a.![]()
Collapse
Affiliation(s)
- Jiaqi Long
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Xuanyi Yuan
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Chaoyang Ma
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Miaomiao Du
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Xiaoli Ma
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Zicheng Wen
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Ran Ma
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Yuzhen Wang
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| | - Yongge Cao
- Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices
- Department of Physics
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
13
|
Jiang C, Johkan M, Hohjo M, Tsukagoshi S, Ebihara M, Nakaminami A, Maruo T. Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. SCIENTIA HORTICULTURAE 2017; 222:221-229. [PMID: 0 DOI: 10.1016/j.scienta.2017.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
14
|
Song Y, Jiang C, Gao L. Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1832. [PMID: 28018376 PMCID: PMC5145862 DOI: 10.3389/fpls.2016.01832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 05/19/2023]
Abstract
Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation, and plant growth and development of young tomato plants were examined to estimate the effects of supplemental lighting with various composite spectra and different light orientations. Light-emitting diodes (LEDs) of polychromatic light quality, red + blue (R/B), white + red + blue (W/R/B), white + red + far-red (W/R/FR), and white + blue (W/B) were assembled from the underneath canopy or from the inner canopy as supplemental lighting resources. The results showed that the use of supplemental lighting significantly increased the photosynthetic efficiency, and reduced stomatal closure while promoting plant growth. Among all supplemental lighting treatments, the W/R/B and W/B from the underneath canopy had best performance. The different photosynthetic performances among the supplemental lighting treatments are resulted from variations in CO2 utilization. The enhanced blue light fraction in the W/R/B and W/B could better stimulate stomatal opening and promote photosynthetic electron transport activity, thus better improving photosynthetic rate. Compared with the inner canopy treatment, the supplemental lighting from the underneath canopy could better enhance the carbon dioxide assimilation efficiency and excessive energy dissipation, leading to an improved photosynthetic performance. Stomatal morphology was highly correlated to leaf photosynthesis and plant development, and should thus be an important determinant for the photosynthesis and the growth of greenhouse tomatoes.
Collapse
Affiliation(s)
- Yu Song
- College of Horticulture, China Agricultural UniversityBeijing, China
- Institute of Germplasm Resources, Xinjiang Academy of Agricultural ScienceUrumqi, China
| | - Chengyao Jiang
- Graduate School of Horticulture, Chiba UniversityMatsudo, Japan
| | - Lihong Gao
- College of Horticulture, China Agricultural UniversityBeijing, China
| |
Collapse
|
15
|
Wang Y, Han Y, Han J, Zhang X, Chen Y, Wang S, Wen L, Liu N, Su J, Li L, Gao Y. UV-free red electroluminescence from the cross-connected p-ZnO:Cu nanobushes/n-GaN light emitting diode. OPTICS EXPRESS 2016; 24:3940-3949. [PMID: 26907047 DOI: 10.1364/oe.24.003940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A p-ZnO:Cu/n-GaN heterojunction light emitting diode (LED) is fabricated by growing cross-connected p-ZnO:Cu nanobushes on n-GaN film using chemical vapor deposition under oxygen-rich condition. This LED emits stable UV-free red light of 677 nm and 745 nm. The electroluminescence (EL) light of this LED is tuned from ultraviolet (UV) of ZnO/GaN to UV-free red by the electronic interfacial transition from the conduction band of n-GaN to the deep acceptor levels of p-ZnO:Cu. Both room temperature and low temperature (5K) photoluminescence spectra of ZnO:Cu indicate that the UV emission of ZnO is suppressed and the green emission is enhanced, which implies the formation of Cu-related deep levels introduced by intentionally doping Cu in ZnO. These deep levels help the EL red emission in the LED device.
Collapse
|
16
|
Zhang G, Shen S, Takagaki M, Kozai T, Yamori W. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:1110. [PMID: 26697055 PMCID: PMC4677251 DOI: 10.3389/fpls.2015.01110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 05/09/2023]
Abstract
Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.
Collapse
Affiliation(s)
- Geng Zhang
- Graduate School of Horticulture, Chiba UniversityMatsudo, Japan
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | - Shanqi Shen
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | - Michiko Takagaki
- Graduate School of Horticulture, Chiba UniversityMatsudo, Japan
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | | | - Wataru Yamori
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| |
Collapse
|
17
|
Kim MJ, Parvin R, Mushtaq MMH, Hwangbo J, Kim JH, Na JC, Kim DW, Kang HK, Kim CD, Cho KO, Yang CB, Choi HC. Growth performance and hematological traits of broiler chickens reared under assorted monochromatic light sources. Poult Sci 2013; 92:1461-6. [PMID: 23687140 DOI: 10.3382/ps.2012-02945] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A study was conducted to investigate the effect of different monochromatic lights on growth performance and hematological response of growing broiler chickens. A total of 360 one-day-old broiler chicks were randomly divided into 6 lighting treatments, which were replicated 6 times with 10 chicks in each replicate. Six light treatments include incandescent bulbs (as a control) and light-emitting diode white light, blue light, red light, green light, and yellow light (YL). The birds were provided with similar nutritional specifications and environmental management facilities, except for the lights throughout the experimental period. Growth performance was evaluated in terms of BW, BW gain, feed intake, and feed conversion ratio at weekly intervals. At the end of 5 wk, 2 birds from each replicate were randomly selected for blood collection to determine hematological response. The BW and feed intake was numerically higher in YL at 5 wk of age. But interestingly, this did not result in improved feed conversion ratio in YL; nevertheless, numerical values were lower in YL at 5 wk (P > 0.05). Red blood cells, blood platelet count, and percent hematocrit were numerically higher under YL, whereas white blood cell counts and percent hemoglobin remained unaffected due to light treatments. It was concluded that monochromatic light is a potential light source that might provide a beneficial effect on growth performance but is inconclusive for hematological measures of broilers.
Collapse
Affiliation(s)
- M J Kim
- National Institute of Animal Science, Rural Development Administration, 9 Eoryong-ri, Seonghwan-eup, Cheonan-si, Chungnam-do, 330-801, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|