1
|
Laureano G, Matos AR, Figueiredo A. Eicosapentaenoic acid: New insights into an oomycete-driven elicitor to enhance grapevine immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108799. [PMID: 38857564 DOI: 10.1016/j.plaphy.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv. Trincadeira), while a host lipid derived phytohormone, jasmonic acid (JA) was used as a molecule known to trigger host defence. Their potential as defence triggers was assessed by analysing the expression of a set of genes related to grapevine defence and evaluating the FA modulation upon elicitation. JA prompted grapevine immunity, altering lipid metabolism and up-regulating the expression of several defence genes. EPA also induced a myriad of responses to the levels typically observed in tolerant plants. Its application activated the transcription of defence gene's regulators, pathogen-related genes and genes involved in phytoalexins biosynthesis. Moreover, EPA application resulted in the alteration of the leaf FA profile, likely by impacting biosynthetic, unsaturation and turnover processes. Although both molecules were able to trigger grapevine defence mechanisms, EPA induced a more robust and prolonged response. This finding establishes EPA as a promising elicitor for an effectively managing grapevine downy mildew diseases.
Collapse
Affiliation(s)
- Gonçalo Laureano
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal.
| | - Ana Rita Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| |
Collapse
|
2
|
Figueiredo J, Cavaco AR, Guerra-Guimarães L, Leclercq C, Renaut J, Cunha J, Eiras-Dias J, Cordeiro C, Matos AR, Sousa Silva M, Figueiredo A. An apoplastic fluid extraction method for the characterization of grapevine leaves proteome and metabolome from a single sample. PHYSIOLOGIA PLANTARUM 2021; 171:343-357. [PMID: 32860657 DOI: 10.1111/ppl.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/23/2023]
Abstract
The analysis of complex biological systems keeps challenging researchers. The main goal of systems biology is to decipher interactions within cells, by integrating datasets from large scale analytical approaches including transcriptomics, proteomics and metabolomics and more specialized 'OMICS' such as epigenomics and lipidomics. Studying different cellular compartments allows a broader understanding of cell dynamics. Plant apoplast, the cellular compartment external to the plasma membrane including the cell wall, is particularly demanding to analyze. Despite our knowledge on apoplast involvement on several processes from cell growth to stress responses, its dynamics is still poorly known due to the lack of efficient extraction processes adequate to each plant system. Analyzing woody plants such as grapevine raises even more challenges. Grapevine is among the most important fruit crops worldwide and a wider characterization of its apoplast is essential for a deeper understanding of its physiology and cellular mechanisms. Here, we describe, for the first time, a vacuum-infiltration-centrifugation method that allows a simultaneous extraction of grapevine apoplastic proteins and metabolites from leaves on a single sample, compatible with high-throughput mass spectrometry analyses. The extracted apoplast from two grapevine cultivars, Vitis vinifera cv 'Trincadeira' and 'Regent', was directly used for proteomics and metabolomics analysis. The proteome was analyzed by nanoLC-MS/MS and more than 700 common proteins were identified, with highly diverse biological functions. The metabolome profile through FT-ICR-MS allowed the identification of 514 unique putative compounds revealing a broad spectrum of molecular classes.
Collapse
Affiliation(s)
- Joana Figueiredo
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Cavaco
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
| | - Leonor Guerra-Guimarães
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Céline Leclercq
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária - Estação Vitivinícola Nacional, Dois Portos, Portugal
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária - Estação Vitivinícola Nacional, Dois Portos, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Matos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Figueiredo
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
| |
Collapse
|