1
|
Bolan S, Padhye LP, Mulligan CN, Alonso ER, Saint-Fort R, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130189. [PMID: 36265382 DOI: 10.1016/j.jhazmat.2022.130189] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Catherine N Mulligan
- Department of Bldg, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Emilio Ritore Alonso
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
| | - Roger Saint-Fort
- Department of Environmental Science, Faculty of Science & Technology, Mount Royal University, Calgary, AB T3E6K6, Canada
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
2
|
Kariyawasam T, Doran GS, Howitt JA, Prenzler PD. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. CHEMOSPHERE 2022; 291:132981. [PMID: 34826448 DOI: 10.1016/j.chemosphere.2021.132981] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants that are extremely hydrophobic in nature and resistant to biological degradation. Extraction of PAHs from environmental matrices is the first and most crucial step in PAH quantification. Extraction followed by quantification is essential to understand the extent of contamination prior to the application of remediation approaches. Due to their non-polar structures, PAHs can be adsorbed tightly to the organic matter in soils and sediments, making them more difficult to be extracted. Extraction of PAHs can be achieved by a variety of methods. Techniques such as supercritical and subcritical fluid extraction, microwave-assisted solvent extraction, plant oil-assisted extraction and some microextraction techniques provide faster PAH extraction using less organic solvents, while providing a more environmentally friendly and safer process with minimum matrix interferences. More recently, more environmentally friendly methods for soil and sediment remediation have been explored. This often involves using natural chemicals, such as biosurfactants, to solubilize PAHs in contaminated soils and sediments to allow subsequent microbial degradation. Vermiremediation and microbial enzyme-mediated remediation are emerging approaches, which require further development. The following summarises the existing literature on traditional PAH extraction and bioremediation methods and contrasts them to newer, more environmentally friendly ways.
Collapse
Affiliation(s)
- Thiloka Kariyawasam
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 2702, Australia
| | - Gregory S Doran
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Julia A Howitt
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 2702, Australia
| | - Paul D Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
3
|
Mulligan CN. Sustainable Remediation of Contaminated Soil Using Biosurfactants. Front Bioeng Biotechnol 2021; 9:635196. [PMID: 33791286 PMCID: PMC8005596 DOI: 10.3389/fbioe.2021.635196] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Selection of the most appropriate remediation technology must coincide with the environmental characteristics of the site. The risk to human health and the environment at the site must be reduced, and not be transferred to another site. Biosurfactants have the potential as remediation agents due to their biodegradability, low toxicity, and effectiveness. Selection of biosurfactants should be based on pollutant characteristics and properties, treatment capacity, costs, regulatory requirements, and time constraints. Moreover, understanding of the mechanisms of interaction between biosurfactants and contaminants can assist in selection of the appropriate biosurfactants for sustainable remediation. Enhanced sustainability of the remediation process by biosurfactants can be achieved through the use of renewable or waste substrates, in situ production of biosurfactants, and greener production and recovery processes for biosurfactants. Future research needs are identified.
Collapse
Affiliation(s)
- Catherine N Mulligan
- Concordia Institute of Water, Energy and Sustainable Systems, Concordia University, Montreal, QC, Canada
| |
Collapse
|
4
|
Basim Y, Mohebali G, Jorfi S, Nabizadeh R, Ghadiri A, Moghadam MA, Soleymani F, Fard NJH. Comparison of performance and efficiency of four methods to extract genomic DNA from oil contaminated soils in southwestern of Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:463-468. [PMID: 33312575 PMCID: PMC7721925 DOI: 10.1007/s40201-020-00474-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 06/12/2023]
Abstract
The wide spectrum of oil industry activities caused soil contaminants, as environmental concern in many areas of the world. Bioremediation of oily soils, as biological approach done by bacteria and fungi, is very important to eliminate this pollution. In this study four different metagenomic protocols for DNA extraction has been tested in order to sequence and identify the native bacterial species involved in remediation of oily soils. In this regard, 3 manual methods and a soil DNA extraction kit are used. In manual protocol, physical processes including the addition of silica beads and freezing samples by liquid nitrogen, chemical methods such as treating the lysozyme, and lysis buffer and proteinase K as biochemical methods were utilized for optimal extraction. Quality and quantity of the extracted DNA analyzed using Agarose gel electrophoresis and Picodrop respectively. Then, the 16S rdna gene of bacteria amplified through universal primer for preparing a genomic library by PCR. Results showed that the highest concentration and quality of extracted DNA was obtained by protocol D which was about 135 μg/ul and 260/230 = 2.2 respectively. Moreover, 500 bp fragment amplified perfectly by using DNA extracted through protocol D in the PCR test. Therefore, protocol D can be used as an appropriate and effective way in order to study the microbial population of oily soils using direct extraction of DNA.
Collapse
Affiliation(s)
- Yalda Basim
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasemali Mohebali
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ata Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi Moghadam
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | |
Collapse
|
5
|
Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019; 7:E581. [PMID: 31752381 PMCID: PMC6920868 DOI: 10.3390/microorganisms7110581] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability.
Collapse
Affiliation(s)
- Emmanuel O. Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa;
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa, Florida Campus, Rooderpoort 1709, South Africa
| | - Chioma B. Chikere
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt 500272, Nigeria;
| |
Collapse
|
6
|
Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnol Bioeng 2018; 115:796-814. [PMID: 29240227 DOI: 10.1002/bit.26517] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/05/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022]
Abstract
The objective of this review is to provide a comprehensive overview of the advances in the applications of rhamnolipids biosurfactants in soil and ground water remediation for removal of petroleum hydrocarbon and heavy metal contaminants. The properties of rhamnolipids associated with the contaminant removal, that is, solubilization, emulsification, dispersion, foaming, wetting, complexation, and the ability to modify bacterial cell surface properties, were reviewed in the first place. Then current remediation technologies with integration of rhamnolipid were summarized, and the effects and mechanisms for rhamnolipid to facilitate contaminant removal for these technologies were discussed. Finally rhamnolipid-based methods for remediation of the sites co-contaminated by petroleum hydrocarbons and heavy metals were presented and discussed. The review is expected to enhance our understanding on environmental aspects of rhamnolipid and provide some important information to guide the extending use of this fascinating chemical in remediation applications.
Collapse
Affiliation(s)
- Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China.,School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, Hubei, China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China.,School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, Hubei, China
| | - Xin Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|