1
|
Alami M, Boumezough K, Khalil A, Ramchoun M, Boulbaroud S, Fulop T, Morvaridzadeh M, Berrougui H. The Modulatory Bioeffects of Pomegranate ( Punica granatum L.) Polyphenols on Metabolic Disorders: Understanding Their Preventive Role against Metabolic Syndrome. Nutrients 2023; 15:4879. [PMID: 38068738 PMCID: PMC10707905 DOI: 10.3390/nu15234879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Modern research achievements support the health-promoting effects of natural products and diets rich in polyphenols. Pomegranate (PG) (Punica granatum L.) contains a considerable number of bioactive compounds that exert a broad spectrum of beneficial biological activities, including antimicrobial, antidiabetic, antiobesity, and atheroprotective properties. In this context, the reviewed literature shows that PG intake might reduce insulin resistance, cytokine levels, redox gene expression, blood pressure elevation, vascular injuries, and lipoprotein oxidative modifications. The lipid parameter corrective capabilities of PG-ellagitannins have also been extensively reported to be significantly effective in reducing hyperlipidemia (TC, LDL-C, VLDL-C, and TAGs), while increasing plasma HDL-C concentrations and improving the TC/HDL-C and LDL-C/HDL-C ratios. The health benefits of pomegranate consumption seem to be acheived through the amelioration of adipose tissue endocrine function, fatty acid utilization, GLUT receptor expression, paraoxonase activity enhancement, and the modulation of PPAR and NF-κB. While the results from animal experiments are promising, human findings published in this field are inconsistent and are still limited in several aspects. The present review aims to discuss and provide a critical analysis of PG's bioeffects on the components of metabolic syndrome, type-2 diabetes, obesity, and dyslipidemia, as well as on certain cardiovascular-related diseases. Additionally, a brief overview of the pharmacokinetic properties, safety, and bioavailability of PG-ellagitannins is included.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
| | - Abdelouahed Khalil
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
| | - Tamas Fulop
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Mojgan Morvaridzadeh
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| |
Collapse
|
2
|
Singh J, Kaur HP, Verma A, Chahal AS, Jajoria K, Rasane P, Kaur S, Kaur J, Gunjal M, Ercisli S, Choudhary R, Bozhuyuk MR, Sakar E, Karatas N, Durul MS. Pomegranate Peel Phytochemistry, Pharmacological Properties, Methods of Extraction, and Its Application: A Comprehensive Review. ACS OMEGA 2023; 8:35452-35469. [PMID: 37810640 PMCID: PMC10551920 DOI: 10.1021/acsomega.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023]
Abstract
Pomegranate peel, derived from the processing of Punica granatum L. (pomegranate), has traditionally been considered agricultural waste. However, recent studies have revealed its potential as a rich source of bioactive compounds with diverse pharmacological effects. Pomegranate peel is a rich reservoir of antioxidants, polyphenols, dietary fiber, and vitamins, which contribute to its remarkable bioactivity. Studies have demonstrated the anti-inflammatory, cardioprotective, wound healing, anticancer, and antimicrobial properties of pomegranate peel owing to the presence of phytochemicals, such as gallic acid, ellagic acid, and punicalagin. The extraction of bioactive compounds from pomegranate peel requires a careful selection of techniques to maximize the yield and quality. Green extraction methods, including pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE), offer efficient and sustainable alternatives to traditional methods. Furthermore, pomegranate peel has been utilized in the food industry, where it can significantly enhance the nutritional value, organoleptic characteristics, and shelf life of food products. Pomegranate peel has the potential to be used to develop innovative functional foods, nutraceuticals, and other value-added products, providing new opportunities for the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Jyoti Singh
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Hamita Preet Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anjali Verma
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Arshminder Singh Chahal
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kaushal Jajoria
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prasad Rasane
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sawinder Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaspreet Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mahendra Gunjal
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye
- HGF
Agro, ATA Teknokent, 25240 Erzurum, Türkiye
| | - Ravish Choudhary
- Division
of Seed Science and Technology, ICAR-Indian
Agricultural Research Institute, New Delhi 110012, India
| | | | - Ebru Sakar
- Department
of Horticulture, Faculty of Agriculture, Harran University, 63290 Sanliurfa, Türkiye
| | - Neva Karatas
- Department
of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, 25240 Erzurum, Türkiye
| | | |
Collapse
|
3
|
Fakudze NT, Aniogo EC, George BP, Abrahamse H. The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy. PLANTS (BASEL, SWITZERLAND) 2022; 11:2820. [PMID: 36365273 PMCID: PMC9654801 DOI: 10.3390/plants11212820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Punica granatum (P. granatum) is a fruit-bearing tree from the Punicaceae family, indigenous to Iran. This plant has healing qualities that have drawn the interest of the medical community as an alternative treatment for malignancies and non-malignancies. Its healing quality is due to the phytochemicals present in the plant. These include ellagic acid, punicic acid, phenols, and flavonoids. In traditional medicine, P. granatum has been used in treating diseases such as dysentery, bleeding disorders, leprosy, and burns. This review explores the effects of the phytochemical constituents of P. granatum on photodynamic therapy for cancer, chronic inflammation, osteoarthritis, and viral infections. Its antioxidant and antitumor effects play a role in reduced free radical damage and cancer cell proliferation. It was concluded that P. granatum has been used for many disease conditions for a better therapeutic outcome. This paper will give visibility to more studies and expand the knowledge on the potential use of P. granatum in photodynamic cancer treatment.
Collapse
|
4
|
Effect of denture liners surface modification with Equisetum giganteum and Punica granatum on Candida albicans biofilm inhibition. Ther Deliv 2022; 13:157-166. [PMID: 35195016 DOI: 10.4155/tde-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This study investigated the effect of denture liners surface modification with Equisetum giganteum (EG) and Punica granatum (PG) on Candida albicans biofilm inhibition supposing its usage as a sustained-release therapeutical delivery system for Candida-associated denture stomatitis. Materials & methods: C. albicans biofilm (SC5314 or ATCC 90028) was formed on soft liners superficially modified by a primer mixed to drugs at minimum inhibitory concentrations (0.100 g for EG and PG or 0.016 g for nystatin per ml of primer). After 24 h, 7 or 14 days, antibiofilm activity was evaluated by colony-forming unit counts. Results: Not all groups were equi-efficient to nystatin after 24 h and 7 days. After 14 days, EG and PG efficacies were not different from nystatin (almost 100% inhibition). Conclusion: The proposed protocol presents a promising option to allopathic drugs for Candida-associated denture stomatitis treatment.
Collapse
|
6
|
Bassiri-Jahromi S, Pourshafie MR, Mirabzade Ardakani E, Ehsani AH, Doostkam A, Katirae F, Mostafavi E. In Vivo Comparative Evaluation of the Pomegranate (Punica granatum) Peel Extract as an Alternative Agent to Nystatin against Oral Candidiasis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:296-304. [PMID: 29892147 DOI: 10.30476/ijms.2018.40542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND The pomegranate peel extract is a rich source of natural antioxidant and antimicrobial activity. The aim of the present investigation was to evaluate the in vivo antifungal activity of the pomegranate peel extract and to compare it with nystatin against oral candidiasis in Wistar rats. METHODS Thirty-five male Wistar rats, 6 to 8 weeks old and 220 to 250 g in weight, were used for animal studies. The rats were randomly divided into 7 groups. All the rats, except the control group, were immunosuppressed with cyclosporine (40 mg/kg/d) and hydrocortisone acetate (500 µg/kg/d). Then oral candidiasis was induced via the oral administration of a suspension of Candida albicans (ATCC 10231) (2×107 cell/mL) in PBS on the palate and tongue of the animals on days 3 and 5. Treatment was initiated by using 3 different concentrations of the pomegranate peel extract (125, 250, and 500 µg/mL/kg) and nystatin 100000 U/mL/kg by gavage daily. The statistical analysis was performed using the SPSS, version 22.0. In this study, generalized estimating equations were used for data analysis to determine the effects of the pomegranate peel extract and nystatin on oral candidiasis. RESULTS Regardless of the concentration of the pomegranate peel extract used for the treatment of oral candidiasis, a significant improvement was seen after 15 days of treatment. All the doses of the pomegranate peel were effective against candidiasis after 15 days; the pomegranate peel extract had no adverse effects following administration in the rats. CONCLUSION Our results indicated that the pomegranate peel extract is a promising approach to oral candidiasis treatment, and it may serve as a natural alternative prospect due to its potency against oral candidiasis.
Collapse
Affiliation(s)
| | | | - Esmat Mirabzade Ardakani
- Biotechnology Research Center, Pasteur Institute of Iran, Molecular Medicine Group, Tehran, Iran
| | - Amir Hooshang Ehsani
- Department of Dermatology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Doostkam
- Department of Pharmacology, Medical school, Shiraz University of Medical Science, Shiraz, Iran
| | - Farzad Katirae
- Department of Pathobiology, Section of Mycology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ehsan Mostafavi
- Department of Epidemiology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|