1
|
Dantas GDPF, Ferraz FS, Coimbra JLP, Paniago RM, Dantas MSS, Lacerda SMSN, Procópio MS, Gonçalves MF, Furtado MH, Mendes BP, López JL, Krohling AC, Martins EMN, Andrade LM, Ladeira LO, Andrade ÂL, Costa GMJ. The toxicity of superparamagnetic iron oxide nanoparticles induced on the testicular cells: In vitro study. NANOIMPACT 2024; 35:100517. [PMID: 38848992 DOI: 10.1016/j.impact.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention in biomedical research due to their potential applications. However, little is known about their impact and toxicity on testicular cells. To address this issue, we conducted an in vitro study using primary mouse testicular cells, testis fragments, and sperm to investigate the cytotoxic effects of sodium citrate-coated SPIONs (Cit_SPIONs). Herein, we synthesized and physiochemically characterized the Cit_SPIONs and observed that the sodium citrate diminished the size and improved the stability of nanoparticles in solution during the experimental time. The sodium citrate (measured by thermogravimetry) was biocompatible with testicular cells at the used concentration (3%). Despite these favorable physicochemical properties, the in vitro experiments demonstrated the cytotoxicity of Cit_SPIONs, particularly towards testicular somatic cells and sperm cells. Transmission electron microscopy analysis confirmed that Leydig cells preferentially internalized Cit_SPIONs in the organotypic culture system, which resulted in alterations in their cytoplasmic size. Additionally, we found that Cit_SPIONs exposure had detrimental effects on various parameters of sperm cells, including motility, viability, DNA integrity, mitochondrial activity, lipid peroxidation (LPO), and ROS production. Our findings suggest that testicular somatic cells and sperm cells are highly sensitive and vulnerable to Cit_SPIONs and induced oxidative stress. This study emphasizes the potential toxicity of SPIONs, indicating significant threats to the male reproductive system. Our findings highlight the need for detailed development of iron oxide nanoparticles to enhance reproductive nanosafety.
Collapse
Affiliation(s)
- Graziela de P F Dantas
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fausto S Ferraz
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - John L P Coimbra
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto M Paniago
- Department of Physics, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria S S Dantas
- Metallurgical and Materials Engineering Department, EE, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samyra M S N Lacerda
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela S Procópio
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus F Gonçalves
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo H Furtado
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Clínica MF Fertilidade Masculina, Belo Horizonte, MG, Brazil
| | | | - Jorge L López
- Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco, Acre, Brazil
| | - Alisson C Krohling
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | - Estefânia M N Martins
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | - Lídia M Andrade
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physics, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O Ladeira
- Metallurgical and Materials Engineering Department, EE, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângela L Andrade
- Department of Chemistry, ICEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Ferraz FS, Dantas GDPF, Coimbra JLP, López JL, Lacerda SMSN, Dos Santos ML, Vieira CP, Lara NDLEM, Viana PIM, Ladeira LO, Guarnieri LO, Marçal EMA, Moraes MFD, Martins EMN, Andrade LM, Costa GMJ. Effects of superparamagnetic iron oxide nanoparticles (SPIONS) testicular injection on Leydig cell function and sperm production in a murine model. Reprod Toxicol 2024; 126:108584. [PMID: 38561096 DOI: 10.1016/j.reprotox.2024.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
In the domain of medical advancement, nanotechnology plays a pivotal role, especially in the synthesis of biocompatible materials for therapeutic use. Superparamagnetic Iron Oxide Nanoparticles (SPIONs), known for their magnetic properties and low toxicity, stand at the forefront of this innovation. This study explored the reproductive toxicological effects of Sodium Citrate-functionalized SPIONs (Cit_SPIONs) in adult male mice, an area of research that holds significant potential yet remains largely unknown. Our findings reveal that Cit_SPIONs induce notable morphological changes in interstitial cells and the seminiferous epithelium when introduced via intratesticular injection. This observation is critical in understanding the interactions of nanomaterials within reproductive biological systems. A striking feature of this study is the rapid localization of Cit_SPIONs in Leydig cells post-injection, a factor that appears to be closely linked with the observed decrease in steroidogenic activity and testosterone levels. This data suggests a possible application in developing nanostructured therapies targeting androgen-related processes. Over 56 days, these nanoparticles exhibited remarkable biological distribution in testis parenchyma, infiltrating various cells within the tubular and intertubular compartments. While the duration of spermatogenesis remained unchanged, there were many Tunel-positive germ cells, a notable reduction in daily sperm production, and reduced progressive sperm motility in the treated group. These insights not only shed light on the intricate mechanisms of Cit_SPIONs interaction with the male reproductive system but also highlight the potential of nanotechnology in developing advanced biomedical applications.
Collapse
Affiliation(s)
- Fausto S Ferraz
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Graziela de P F Dantas
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - John L P Coimbra
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge L López
- Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco, AC, Brazil
| | - Samyra M S N Lacerda
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mara L Dos Santos
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina P Vieira
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathália de L E M Lara
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro I M Viana
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O Ladeira
- Department of Physics, ICEX, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo O Guarnieri
- Magnetic Resonance Center (CTPMag) of the Department of Electrical Engineering at the Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo M A Marçal
- Magnetic Resonance Center (CTPMag) of the Department of Electrical Engineering at the Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Magnetic Resonance Center (CTPMag) of the Department of Electrical Engineering at the Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Estefânia M N Martins
- Nuclear Technology Development Center (CDTN), National Nuclear Energy Commission (CNEN), Belo Horizonte, MG, Brazil
| | - Lídia M Andrade
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physics, ICEX, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Verma GS, Nirmal NK, John PJ. Iron oxide nanoparticles reversibly affect sperm quality in Wistar rats. Andrologia 2022; 54:e14631. [DOI: 10.1111/and.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gajraj Singh Verma
- Department of Zoology, Center for Advanced Studies University of Rajasthan Jaipur India
| | - Naresh Kumar Nirmal
- Department of Zoology, Center for Advanced Studies University of Rajasthan Jaipur India
| | - Placheril J. John
- Department of Zoology, Center for Advanced Studies University of Rajasthan Jaipur India
| |
Collapse
|
4
|
Gamal A, Kortam LE, El Ghareeb AEW, El Rahman HAA. Assessment of the potential toxic effect of magnetite nanoparticles on the male reproductive system based on immunological and molecular studies. Andrologia 2022; 54:e14613. [PMID: 36216500 DOI: 10.1111/and.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Magnetite nanoparticles (MNPs) are the most conventional type of iron oxide nanoparticles used in the food industrial processes, removal of heavy metals, and biomedical applications in vivo or in vitro. Until now, there is no sufficient information that can confirm its effect on the body's immune system and reproductive health in males. The purpose of this research is to estimate the immunotoxic and reproductive toxic effects of MNPs in male rats. This study included 36 adult male albino rats divided into three groups. The experimental groups were intraperitoneally injected with MNPs at doses of 5 and 10 mg/kg body weight 3 times/week for 60 days, while the control group was injected with saline solution. MNPs caused a significant decrease in the body weight change of the high-treated group. MNPs produced changes in the lymphocyte proliferation rate which referred to a significant immunotoxic effect measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide reduction method. The testicular tissue of male-treated rats showed some moderate and severe degenerative changes. The sperm parameters of count, motility, and viability were significantly decreased. Sperm morphological abnormalities were detected in all treated animals. MNPs produced a significant decrease in testosterone levels, increased the level of malondialdehyde, impaired the activity of the antioxidant enzymes and induced testicular DNA damage. In conclusion, MNPs affected the normal immune state in male rats and facilitated the generation of reactive oxygen species subsequently triggering testicular oxidative stress damages. All these consequences had a negative impact on male reproductive health.
Collapse
Affiliation(s)
- Aya Gamal
- Department of Zoology, Faculty of Science, Cairo University, Egypt
| | - Laila E Kortam
- Department of Molecular Immunity, Animal Reproduction Research Institute (ARRI), Egypt
| | | | | |
Collapse
|
5
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
6
|
Dantas GP, Ferraz FS, Andrade LM, Costa GM. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem Biol Interact 2022; 363:110023. [DOI: 10.1016/j.cbi.2022.110023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
7
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
8
|
Mil’to IV, Sukhodolo IV, Ivanova VV, Usov VY. Structure of Rat Testicles after Intravenous Injection of Nanosized Magnetite Particles. Bull Exp Biol Med 2019; 166:680-685. [DOI: 10.1007/s10517-019-04417-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/28/2022]
|
9
|
Caldeira DF, Paulini F, Silva RC, Azevedo RBD, Lucci CM. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure. Int J Hyperthermia 2017; 34:415-422. [PMID: 28605996 DOI: 10.1080/02656736.2017.1341646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnetic nanoparticles can be used in different areas of biology. It is therefore important to know the effects of such nanomaterials on germline cells as they may traverse the blood-testis barrier. This work aimed to evaluate the response of bull sperm after exposure to a magnetic fluid containing DMSA-coated maghemite nanoparticles (MNP-DMSA) in order to determine nanotoxicity. Bull sperm was incubated with MNP-DMSA at final concentrations of 0.06, 0.03 or 0.015 mg Fe/mL. Sperm kinetics, plasma membrane integrity and acrosome reaction were evaluated over a 4 h incubation period. The sperm cells were also evaluated by transmission electron microscopy. Exposure of bull sperm to MNP-DMSA did not affect sperm kinetics or integrity. Neither ultrastructural damage of sperm cells nor uptake of nanoparticles by the spermatozoa was observed. In conclusion, MNP-DMSA does not affect sperm function or structure under the conditions tested.
Collapse
Affiliation(s)
| | - Fernanda Paulini
- b Department of Genetics and Morphology/Department of Physiological Sciences , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| | - Renata Carvalho Silva
- b Department of Genetics and Morphology/Department of Physiological Sciences , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| | - Ricardo Bentes de Azevedo
- c Department of Genetics and Morphology , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| | - Carolina Madeira Lucci
- d Department of Physiological Sciences , Institute of Biological Sciences, University of Brasilia , Brasilia , Brazil
| |
Collapse
|