1
|
Chanda K, Mukhopadhyay D. LncRNA Xist, X-chromosome Instability and Alzheimer's Disease. Curr Alzheimer Res 2020; 17:499-507. [PMID: 32851944 DOI: 10.2174/1567205017666200807185624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative Diseases (NDD) are the major contributors to age-related causes of mental disability on a global scale. Most NDDs, like Alzheimer's Disease (AD), are complex in nature - implying that they are multi-parametric both in terms of heterogeneous clinical outcomes and underlying molecular paradigms. Emerging evidence from high throughput genomic, transcriptomic and small RNA sequencing experiments hint at the roles of long non-coding RNAs (lncRNAs) in AD. X-inactive Specific Transcript (XIST), a component of the Xic, the X-chromosome inactivation centre, is an RNA gene on the X chromosome of the placental mammals indispensable for the X inactivation process. An extensive literature survey shows that aberrations in Xist expression and in some cases, a disruption of the Xchromosome inactivation as a whole play a significant role in AD. Considering the enormous potential of Xist as an endogenous silencing molecule, the idea of using Xist as a non-conventional chromosome silencer to treat diseases harboring chromosomal alterations is also being implemented. Comprehensive knowledge about how Xist could play such a role in AD is still elusive. In this review, we have collated the available knowledge on the possible Xist involvement and deregulation from the perspective of molecular mechanisms governing NDDs with a primary focus on Alzheimer's disease. Possibilities of XIST mediated therapeutic intervention and linkages between XIC and preferential predisposition of females to AD have also been discussed.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata 700 064, India
| |
Collapse
|
2
|
Fernández-Martínez JL, Álvarez-Machancoses Ó, deAndrés-Galiana EJ, Bea G, Kloczkowski A. Robust Sampling of Defective Pathways in Alzheimer's Disease. Implications in Drug Repositioning. Int J Mol Sci 2020; 21:ijms21103594. [PMID: 32438758 PMCID: PMC7279419 DOI: 10.3390/ijms21103594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
We present the analysis of the defective genetic pathways of the Late-Onset Alzheimer’s Disease (LOAD) compared to the Mild Cognitive Impairment (MCI) and Healthy Controls (HC) using different sampling methodologies. These algorithms sample the uncertainty space that is intrinsic to any kind of highly underdetermined phenotype prediction problem, by looking for the minimum-scale signatures (header genes) corresponding to different random holdouts. The biological pathways can be identified performing posterior analysis of these signatures established via cross-validation holdouts and plugging the set of most frequently sampled genes into different ontological platforms. That way, the effect of helper genes, whose presence might be due to the high degree of under determinacy of these experiments and data noise, is reduced. Our results suggest that common pathways for Alzheimer’s disease and MCI are mainly related to viral mRNA translation, influenza viral RNA transcription and replication, gene expression, mitochondrial translation, and metabolism, with these results being highly consistent regardless of the comparative methods. The cross-validated predictive accuracies achieved for the LOAD and MCI discriminations were 84% and 81.5%, respectively. The difference between LOAD and MCI could not be clearly established (74% accuracy). The most discriminatory genes of the LOAD-MCI discrimination are associated with proteasome mediated degradation and G-protein signaling. Based on these findings we have also performed drug repositioning using Dr. Insight package, proposing the following different typologies of drugs: isoquinoline alkaloids, antitumor antibiotics, phosphoinositide 3-kinase PI3K, autophagy inhibitors, antagonists of the muscarinic acetylcholine receptor and histone deacetylase inhibitors. We believe that the potential clinical relevance of these findings should be further investigated and confirmed with other independent studies.
Collapse
Affiliation(s)
- Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/Federico García Lorca, 18, 33007 Oviedo, Spain; (Ó.Á.-M.); (E.J.d.-G.); (G.B.)
- DeepBioInsights, C/Federico García Lorca, 18, 33007 Oviedo, Spain
- Correspondence:
| | - Óscar Álvarez-Machancoses
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/Federico García Lorca, 18, 33007 Oviedo, Spain; (Ó.Á.-M.); (E.J.d.-G.); (G.B.)
- DeepBioInsights, C/Federico García Lorca, 18, 33007 Oviedo, Spain
| | - Enrique J. deAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/Federico García Lorca, 18, 33007 Oviedo, Spain; (Ó.Á.-M.); (E.J.d.-G.); (G.B.)
- Department of Informatics and Computer Science, University of Oviedo, C/Federico García Lorca, 18, 33007 Oviedo, Spain
| | - Guillermina Bea
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/Federico García Lorca, 18, 33007 Oviedo, Spain; (Ó.Á.-M.); (E.J.d.-G.); (G.B.)
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|