1
|
Li Y, Hamad M, Elkord E. Cancer-associated fibroblasts in hepatocellular carcinoma: heterogeneity, mechanisms and therapeutic targets. Hepatol Int 2025:10.1007/s12072-025-10788-5. [PMID: 39979756 DOI: 10.1007/s12072-025-10788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant cancers worldwide. Although immunotherapy has improved the treatment outcome in HCC, a significant percentage of patients with advanced HCC still cannot benefit from immunotherapy. Therefore, developing new targets or combination therapeutic strategies to improve the efficacy of immunotherapy is urgently needed. A deeper understanding of the mechanisms underlying immune regulation may help in this regard. The tumor microenvironment (TME) consists of a diverse set of components modulating the efficacy of immunotherapy. Cancer-associated fibroblasts (CAFs) are critical components of the TME and can regulate both tumor and immune cells through secreted cytokines and exosomes that impact various signaling pathways in target cells. CAF-derived cytokines can also participate in extracellular matrix (ECM) remodeling, thereby impacting cancer progression and tumor responsiveness to immunotherapy among other effects. A thorough understanding of the phenotypic and functional profile dynamism of CAFs may lead the way for new treatment strategies and/or better treatment outcomes in HCC patients. In this review, we outline the biomarkers and functional heterogeneity of CAFs in HCC and elaborate on molecular mechanisms of CAFs, including anti-programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) immunotherapy. We also examine current clinical implications of CAFs-related targets as potential therapeutic candidates in HCC.
Collapse
Affiliation(s)
- Yutong Li
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mawieh Hamad
- College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
2
|
Lee J, Yoo JS, Kim JH, Lee DY, Yang K, Kim B, Choi JI, Jang JW, Choi JY, Yoon SK, Han JW, Sung PS. Prognostic significance of combined PD-L1 expression in malignant and infiltrating cells in hepatocellular carcinoma treated with atezolizumab and bevacizumab. Front Immunol 2024; 15:1506355. [PMID: 39720711 PMCID: PMC11666515 DOI: 10.3389/fimmu.2024.1506355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) expression is abundant not only in malignant cells but also in infiltrating cells within the tumor microenvironment (TME) of hepatocellular carcinoma (HCC). This study explored the association between PD-L1 expression in TME and outcomes in HCC patients treated with atezolizumab plus bevacizumab (AB), emphasizing the implications of PD-L1 expression in both malignant and tumor-infiltrating cells. Methods This study included 72 patients with HCC who underwent percutaneous core needle liver biopsy before AB treatment between September 2020 and December 2023. PD-L1 expression on tumor tissues was assessed using the combined positive score (CPS) with cutoff values of 1 and 10, utilizing antibody clone 22C3 (Dako). Results The distribution of PD-L1 CPS included 24 patients with CPS <1, 33 patients with CPS 1-10, and 15 patients with CPS ≥10. Significant differences in overall survival (OS) were observed across the three groups, with CPS ≥10 showing the highest survival rates (p = 0.010). Patients with CPS ≥10 had better OS than those with CPS <10 (median OS 14.8 vs. 8.3 months, P = 0.046), and CPS ≥1 had better OS than CPS <1 (P = 0.021). For progression-free survival (mPFS), the CPS ≥10 group had the highest median PFS of 11.0 months among the three groups (P = 0.044). Objective response rates (ORR) were higher in the PD-L1 CPS ≥10 group than in the 1-10 and <1 group (53.3%, 27.3%, and 16.7%, respectively; P = .047). Multivariate analysis identified that PD-L1 expression ≥10 and ≥1 were associated with favorable outcomes regarding OS (hazard ratio [HR] 0.283, P = .027 and HR 0.303, P = .006, respectively). Conclusions Combined analysis of PD-L1 expression in malignant and tumor-infiltrating cells can be a promising biomarker for the prognosis of HCC patients treated with AB.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/diagnosis
- B7-H1 Antigen/metabolism
- Male
- Female
- Bevacizumab/therapeutic use
- Bevacizumab/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Middle Aged
- Aged
- Prognosis
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Adult
- Biomarkers, Tumor/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Jaejun Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Jae-Sung Yoo
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hoon Kim
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Dong Yeup Lee
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Keungmo Yang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Bohyun Kim
- Departmend of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republc of Korea, Seoul, Republic of Korea
| | - Joon-Il Choi
- Departmend of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republc of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Republic of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
4
|
Park JG, Roh PR, Kang MW, Cho SW, Hwangbo S, Jung HD, Kim HU, Kim JH, Yoo JS, Han JW, Jang JW, Choi JY, Yoon SK, You YK, Choi HJ, Ryu JY, Sung PS. Intrahepatic IgA complex induces polarization of cancer-associated fibroblasts to matrix phenotypes in the tumor microenvironment of HCC. Hepatology 2024; 80:1074-1086. [PMID: 38466639 DOI: 10.1097/hep.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/13/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS Cancer-associated fibroblasts (CAFs) play key roles in the tumor microenvironment. IgA contributes to inflammation and dismantling antitumor immunity in the human liver. In this study, we aimed to elucidate the effects of the IgA complex on CAFs in Pil Soo Sung the tumor microenvironment of HCC. APPROACH AND RESULTS CAF dynamics in HCC tumor microenvironment were analyzed through single-cell RNA sequencing of HCC samples. CAFs isolated from 50 HCC samples were treated with mock or serum-derived IgA dimers in vitro. Progression-free survival of patients with advanced HCC treated with atezolizumab and bevacizumab was significantly longer in those with low serum IgA levels ( p <0.05). Single-cell analysis showed that subcluster proportions in the CAF-fibroblast activation protein-α matrix were significantly increased in patients with high serum IgA levels. Flow cytometry revealed a significant increase in the mean fluorescence intensity of fibroblast activation protein in the CD68 + cells from patients with high serum IgA levels ( p <0.001). We confirmed CD71 (IgA receptor) expression in CAFs, and IgA-treated CAFs exhibited higher programmed death-ligand 1 expression levels than those in mock-treated CAFs ( p <0.05). Coculture with CAFs attenuated the cytotoxic function of activated CD8 + T cells. Interestingly, activated CD8 + T cells cocultured with IgA-treated CAFs exhibited increased programmed death-1 expression levels than those cocultured with mock-treated CAFs ( p <0.05). CONCLUSIONS Intrahepatic IgA induced polarization of HCC-CAFs into more malignant matrix phenotypes and attenuates cytotoxic T-cell function. Our study highlighted their potential roles in tumor progression and immune suppression.
Collapse
Affiliation(s)
- Jong Geun Park
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pu Reun Roh
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Woo Kang
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suhyun Hwangbo
- Department of Genomic Medicine, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Hae Deok Jung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Hoon Kim
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Sung Yoo
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoung You
- Department of Surgery, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women's University, Seoul, Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Seo DH, Park JW, Jung HW, Kang MW, Kang BY, Lee DY, Lee JJ, Yoon SK, Jang JW, Ahn JG, Sung PS. Machine learning model reveals roles of interferon‑stimulated genes in sorafenib‑resistant liver cancer. Oncol Lett 2024; 28:438. [PMID: 39081963 PMCID: PMC11287107 DOI: 10.3892/ol.2024.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024] Open
Abstract
HCC (Hepatocellular carcinoma) is the most common malignant tumor; however, the molecular pathogenesis of these tumors is not well understood. Sorafenib, an approved treatment for HCC, inhibits angiogenesis and tumor cell proliferation. However, only ~30% of patients are sensitive to sorafenib and most show disease progression, indicating resistance to sorafenib. The present study used machine learning to investigate several mechanisms related to sorafenib resistance in liver cancer cells. This revealed that unphosphorylated interferon-stimulated genes (U-ISGs) were upregulated in sorafenib-resistant liver cancer cells, and the unphosphorylated ISGF3 (U-ISGF3; unphosphorylated STAT1, unphosphorylated STAT2 and IRF9) complex was increased in sorafenib-resistant liver cancer cells. Further study revealed that the knockdown of the U-ISGF3 complex downregulated U-ISGs. In addition, inhibition of the U-ISGF3 complex downregulated cell viability in sorafenib-resistant liver cancer cells. These results suggest that U-ISGF3 induced sorafenib resistance in liver cancer cells. Also, this mechanism may also be relevant to patients with sorafenib resistance.
Collapse
Affiliation(s)
- Deok Hwa Seo
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Woo Park
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hee Won Jung
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Min Woo Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Yoon Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Yeup Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Jun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Gyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Pil Soo Sung
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Mun S, Lee HJ, Kim P. Rebuilding the microenvironment of primary tumors in humans: a focus on stroma. Exp Mol Med 2024; 56:527-548. [PMID: 38443595 PMCID: PMC10984944 DOI: 10.1038/s12276-024-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Conventional tumor models have critical shortcomings in that they lack the complexity of the human stroma. The heterogeneous stroma is a central compartment of the tumor microenvironment (TME) that must be addressed in cancer research and precision medicine. To fully model the human tumor stroma, the deconstruction and reconstruction of tumor tissues have been suggested as new approaches for in vitro tumor modeling. In this review, we summarize the heterogeneity of tumor-associated stromal cells and general deconstruction approaches used to isolate patient-specific stromal cells from tumor tissue; we also address the effect of the deconstruction procedure on the characteristics of primary cells. Finally, perspectives on the future of reconstructed tumor models are discussed, with an emphasis on the essential prerequisites for developing authentic humanized tumor models.
Collapse
Affiliation(s)
- Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea.
- Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|