1
|
Aldoukhi AH, Bilalis P, Alhattab DM, Valle-Pérez AU, Susapto HH, Pérez-Pedroza R, Backhoff-García E, Alsawaf SM, Alshehri S, Boshah H, Alrashoudi AA, Aljabr WA, Alaamery M, Alrashed M, Hasanato RM, Farzan RA, Alsubki RA, Moretti M, Abedalthagafi MS, Hauser CAE. Fusing Peptide Epitopes for Advanced Multiplex Serological Testing for SARS-CoV-2 Antibody Detection. ACS BIO & MED CHEM AU 2024; 4:37-52. [PMID: 38404747 PMCID: PMC10885102 DOI: 10.1021/acsbiomedchemau.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 02/27/2024]
Abstract
The tragic COVID-19 pandemic, which has seen a total of 655 million cases worldwide and a death toll of over 6.6 million seems finally tailing off. Even so, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise, the severity of which cannot be predicted in advance. This is concerning for the maintenance and stability of public health, since immune evasion and increased transmissibility may arise. Therefore, it is crucial to continue monitoring antibody responses to SARS-CoV-2 in the general population. As a complement to polymerase chain reaction tests, multiplex immunoassays are elegant tools that use individual protein or peptide antigens simultaneously to provide a high level of sensitivity and specificity. To further improve these aspects of SARS-CoV-2 antibody detection, as well as accuracy, we have developed an advanced serological peptide-based multiplex assay using antigen-fused peptide epitopes derived from both the spike and the nucleocapsid proteins. The significance of the epitopes selected for antibody detection has been verified by in silico molecular docking simulations between the peptide epitopes and reported SARS-CoV-2 antibodies. Peptides can be more easily and quickly modified and synthesized than full length proteins and can, therefore, be used in a more cost-effective manner. Three different fusion-epitope peptides (FEPs) were synthesized and tested by enzyme-linked immunosorbent assay (ELISA). A total of 145 blood serum samples were used, compromising 110 COVID-19 serum samples from COVID-19 patients and 35 negative control serum samples taken from COVID-19-free individuals before the outbreak. Interestingly, our data demonstrate that the sensitivity, specificity, and accuracy of the results for the FEP antigens are higher than for single peptide epitopes or mixtures of single peptide epitopes. Our FEP concept can be applied to different multiplex immunoassays testing not only for SARS-CoV-2 but also for various other pathogens. A significantly improved peptide-based serological assay may support the development of commercial point-of-care tests, such as lateral-flow-assays.
Collapse
Affiliation(s)
- Ali H. Aldoukhi
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Dana M. Alhattab
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Hepi H. Susapto
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Rosario Pérez-Pedroza
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Emiliano Backhoff-García
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sarah M. Alsawaf
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Salwa Alshehri
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Hattan Boshah
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Abdulelah A. Alrashoudi
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Waleed A. Aljabr
- Research
Centre, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Manal Alaamery
- Developmental
Medicine Department, King Abdullah International Medical Research
Center, King Abdulaziz Medical City, Ministry of National Guard-Health
Affairs, King Saud Bin Abdulaziz University
for Health Sciences, Riyadh 11426, Saudi Arabia
- KACST-BWH
Centre of Excellence for Biomedicine, Joint Centers of Excellence
Program, King Abdulaziz City for Science
and Technology (KACST), Riyadh 12371, Saudi Arabia
- Saudi
Human Genome Project (SHGP), Satellite Lab at King Abdulaziz Medical
City (KAMC), Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz City for Science and Technology (KACST), Riyadh 11426, Saudi Arabia
| | - May Alrashed
- Department
of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Chair
of Medical and Molecular Genetics Research, King Saud University, Riyadh 11433, Saudi Arabia
| | - Rana M. Hasanato
- Department
of Pathology and Laboratory Medicine, King
Saud University, Riyadh 11433, Saudi Arabia
| | - Raed A. Farzan
- Department
of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Chair
of Medical and Molecular Genetics Research, King Saud University, Riyadh 11433, Saudi Arabia
| | - Roua A. Alsubki
- Department
of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Chair
of Medical and Molecular Genetics Research, King Saud University, Riyadh 11433, Saudi Arabia
| | - Manola Moretti
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Malak S. Abedalthagafi
- Pathology and Laboratory Medicine, Emory
School of Medicine, Atlanta, Georgia 30329, United States
| | - Charlotte A. E. Hauser
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
- Red Sea
Research Center, Division of Biological and Environmental
Science and Engineering (BESE), King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Bao M, Dollery SJ, Yuqing F, Tobin GJ, Du K. Micropillar enhanced FRET-CRISPR biosensor for nucleic acid detection. LAB ON A CHIP 2023; 24:47-55. [PMID: 38019145 PMCID: PMC11221459 DOI: 10.1039/d3lc00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
CRISPR technology has gained widespread adoption for pathogen detection due to its exceptional sensitivity and specificity. Although recent studies have investigated the potential of high-aspect-ratio microstructures in enhancing biochemical applications, their application in CRISPR-based detection has been relatively rare. In this study, we developed a FRET-based biosensor in combination with high-aspect-ratio microstructures and Cas12a-mediated trans-cleavage for detecting HPV 16 DNA fragments. Remarkably, our results show that micropillars with higher density exhibit superior molecular binding capabilities, leading to a tenfold increase in detection sensitivity. Furthermore, we investigated the effectiveness of two surface chemical treatment methods for enhancing the developed FRET assay. A simple and effective approach was also developed to mitigate bubble generation in microfluidic devices, a crucial issue in biochemical reactions within such devices. Overall, this work introduces a novel approach using micropillars for CRISPR-based viral detection and provides valuable insights into optimizing biochemical reactions within microfluidic devices.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | | | - Fnu Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Gregory J Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
3
|
Bao M, Dollery SJ, Yuqing F, Tobin GJ, Du K. Micropillar enhanced FRET-CRISPR biosensor for nucleic acid detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554533. [PMID: 37662406 PMCID: PMC10473682 DOI: 10.1101/2023.08.23.554533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
CRISPR technology has gained widespread adoption for pathogen detection due to its exceptional sensitivity and specificity. Although recent studies have investigated the potential of high-aspect-ratio microstructures in enhancing biochemical applications, their application in CRISPR-based detection has been relatively rare. In this study, we developed a FRET-based biosensor in combination with high-aspect-ratio microstructures and Cas12a-mediated trans-cleavage for detecting HPV 16 DNA fragments. Remarkably, our results show that micropillars with higher density exhibit superior molecular binding capabilities, leading to a tenfold increase in detection sensitivity. Furthermore, we investigated the effectiveness of two surface chemical treatment methods for enhancing the developed FRET assay. A simple and effective approach was also developed to mitigate bubble generation in microfluidic devices, a crucial issue in biochemical reactions within such devices. Overall, this work introduces a novel approach using micropillars for CRISPR-based viral detection and provides valuable insights into optimizing biochemical reactions within microfluidic devices.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Stephen J Dollery
- Biological Mimetics, Inc. 124 Byte Drive, Frederick, MD 21702, United States
| | - Fnu Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Gregory J Tobin
- Biological Mimetics, Inc. 124 Byte Drive, Frederick, MD 21702, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| |
Collapse
|
4
|
Ellipilli S, Wang H, Lee WJ, Shu D, Guo P. Proof-of-concept for speedy development of rapid and simple at-home method for potential diagnosis of early COVID-19 mutant infections using nanogold and aptamer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102590. [PMID: 35905841 PMCID: PMC9315840 DOI: 10.1016/j.nano.2022.102590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The positive single-stranded nature of COVID-19 mRNA led to the low proof-reading efficacy for its genome authentication. Thus mutant covid-19 strains have been rapidly evolving. Besides Alpha, Beta, Gamma, Delta, and Omicron variants, currently, subvariants of omicron are circulating, including BA.4, BA.5, and BA.2.12.1. Therefore, the speedy development of a rapid, simple, and easier diagnosis method to deal with new mutant covid viral infection is critically important. Many diagnosis methods have been developed for COVID-19 detection such as RT-PCR and antibodies detection. However, the former is time-consuming, laborious, and expensive, and the latter relies on the production of antibodies making it not suitable for the early diagnosis of viral infection. Many lateral-flow methods are available but might not be suitable for detecting the mutants, Here we proved the concept for the speedy development of a simple, rapid, and cost-effective early at-home diagnosis method for mutant Covid-19 infection by combining a new aptamer. The idea is to use the current lateral flow Covid-19 diagnosis system available in the market or to use one existing antibody for the Lateral Flow Nitrocellulose filter. To prove the concept, the DNA aptamer specific to spike proteins (S-proteins) was conjugated to gold nanoparticles and served as a detection probe. An antibody that is specific to spike proteins overexpressed on COVID viral particles was used as a second probe immobilized to the nitrocellulose membrane. The aptamer conjugated nanoparticles were incubated with spike proteins for half an hour and tested for their ability to bind to antibodies anchored on the nitrocellulose membrane. The gold nanoparticles were visualized on the nitrocellulose membrane due to interaction between the antigen (S-protein) with both the aptamer and the antibody. Thus, the detection of viral antigen can be obtained within 2 h, with a cost of less than $5 for the diagnosis reagent. In the future, as long as the mutant of the newly emerged viral surface protein is reported, a peptide or protein corresponding to the mutation can be produced by peptide synthesis or gene cloning within several days. An RNA or DNA aptamer can be generated quickly via SELEX. A gold-labeled aptamer specific to spike proteins (S-proteins) will serve as a detection probe. Any available lateral-flow diagnosis kits with an immobilized antibody that has been available on the market, or simply an antibody that binds COVID-19 virus might be used as a second probe immobilized on the nitrocellulose. The diagnosis method can be carried out by patients at home if a clinical trial verifies the feasibility and specificity of this method.
Collapse
Affiliation(s)
- Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Jui Lee
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|