1
|
Alexandrova SS, Gladilina YA, Pokrovskaya MV, Sokolov NN, Zhdanov DD. [Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:104-116. [PMID: 35485484 DOI: 10.18097/pbmc20226802104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Asparaginase is one of the most important chemotherapeutic agents against acute lymphoblastic leukemia, the most common form of blood cancer. To date, both asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi), used in hematology, induce chemoresistance in cancer cells and side effects in the form of hypersensitivity of immune reactions. Leukemic cells may be resistant to asparaginase due to the increased activity of asparagine synthetase and other mechanisms associated with resistance to asparaginase. Therefore, the search for new sources of L-asparaginases with improved pharmacological properties remains a promising and prospective study. This article discusses the mechanisms of development of resistance and drug resistance to L-asparaginase, as well as possible ways to overcome them.
Collapse
Affiliation(s)
| | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular Analysis of L-Asparaginases for Clarification of the Mechanism of Action and Optimization of Pharmacological Functions. Pharmaceutics 2022; 14:pharmaceutics14030599. [PMID: 35335974 PMCID: PMC8948990 DOI: 10.3390/pharmaceutics14030599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginases (EC 3.5.1.1) are a family of enzymes that catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. These proteins with different biochemical, physicochemical and pharmacological properties are found in many organisms, including bacteria, fungi, algae, plants and mammals. To date, asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi) are widely used in hematology for the treatment of lymphoblastic leukemias. However, their medical use is limited by side effects associated with the ability of these enzymes to hydrolyze L-glutamine, as well as the development of immune reactions. To solve these issues, gene-editing methods to introduce amino-acid substitutions of the enzyme are implemented. In this review, we focused on molecular analysis of the mechanism of enzyme action and to optimize the antitumor activity.
Collapse
Affiliation(s)
- Marina V. Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpiisky Prospect 1, 354340 Sochi, Russia
| | - Svetlana S. Aleksandrova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Nikolay N. Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Correspondence:
| |
Collapse
|
3
|
Dumina MV, Zhgun AA, Pokrovskay MV, Aleksandrova SS, Zhdanov DD, Sokolov NN, El’darov MA. Comparison of Enzymatic Activity of Novel Recombinant L-asparaginases of Extremophiles. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Dumina MV, Eldarov MA, Zdanov DD, Sokolov NN. [L-asparaginases of extremophilic microorganisms in biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:105-123. [PMID: 32420891 DOI: 10.18097/pbmc20206602105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-asparaginase is extensively used in the treatment of acute lymphoblastic leukemia and several other lymphoproliferative diseases. In addition to its biomedical application, L-asparaginase is also of prospective use in food industry to reduce the formation of acrylamide, which is classified as probably neurotoxic and carcinogenic to human, and in biosensors for determination of L-asparagine level in medicine and food chemistry. The importance of L-asparaginases in different fields, disadvantages of commercial ferments, and the fact that they are widespread in nature stimuli the search for biobetter L-asparaginases from new producing microorganisms. In this regard, extremofile microorganisms exhibit unique physiological properties such as thermal stability, adaptability to extreme cold conditions, salt and pH tolerance and so provide one of the most valuable sources for novel L-asparaginases. The present review summarizes the recent results on studying the structural, functional, physicochemical and kinetic properties, stability of extremophilic L-asparaginases in comparison with their mesophilic homologues.
Collapse
Affiliation(s)
- M V Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - M A Eldarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - D D Zdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
6
|
Melik-Nubarov NS, Grozdova ID, Lomakina GY, Pokrovskaya MV, Pokrovski VS, Aleksandrova SS, Abakumova OY, Podobed OV, Grishin DV, Sokolov NN. PEGylated recombinant L-asparaginase from Erwinia carotovora: Production, properties, and potential applications. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Pokrovskaya M, Zhdanov D, Eldarov M, Aleksandrova S, Veselovskiy A, Pokrovskiy V, Grishin D, Gladilina J, Sokolov N. Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase. ACTA ACUST UNITED AC 2017. [DOI: 10.18097/pbmc20176301062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The active and stable mutant forms of short chain cytoplasmic L-asparaginase type I of Rhodospirillum rubrum (RrA): RrA+N17, D60K, F61L, RrA+N17, A64V, E67K, RrA+N17, E149R, V150P, RrAE149R, V150P and RrAE149R, V150P, F151T were obtained by the method of site-directed mutagenesis. It is established that variants RrA-N17, E149R, V150P, F151T and RrАE149R, V150P are capable to reduce an expression hTERT subunit of telomerase and, hence, activity of telomeres in Jurkat cells, but not in cellular lysates. During too time, L-asparaginasеs of Escherichia coli, Erwinia carotovora and Wolinella succinogenes, mutant forms RrА+N17, D60K, F61L and RrА+N17, A64V, E67K do not suppress of telomerase activity. The assumption of existence in structure RrA of areas (amino acids residues in the position 146-164, 1-17, 60-67) which are responsible for suppression of telomerase activity is made. The received results show that antineoplastic activity of some variants RrA is connected both with reduction of concentration of free L-asparagine, and with expression suppression of hTERT telomerase subunit, that opens new prospects for antineoplastic therapy.
Collapse
Affiliation(s)
| | - D.D. Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - M.A. Eldarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | | | | | | | - D.V. Grishin
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - N.N. Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|