1
|
Keysberg C, Schneider H, Otte K. Production cell analysis and compound-based boosting of small extracellular vesicle secretion using a generic and scalable production platform. Biotechnol Bioeng 2023; 120:987-999. [PMID: 36577715 DOI: 10.1002/bit.28322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs) are a novel format of advanced therapeutical medicinal products (ATMPs). They can act regenerative or immune-modulatory as cell therapy substitutes or as a platform for designer exosomes. The biotechnological production of therapeutic EVs is still very much uncharted territory so standardized host cells, production setups, and isolation methods are not yet implemented. In this work, we present a tangential flow filtration (TFF) and fast-performance liquid chromatography (FPLC)-based size exclusion chromatography (SEC) purification setup that is compatible for industry applications. Moreover, we evaluated a series of potential host cell lines regarding their EV productivity, characteristics, and biological functionality. It was found that telomerase-immortalized Wharton's jelly mesenchymal stromal cells (WJ-MSC/TERT273) secrete high amounts of EVs per cell with regenerative capabilities. On the other hand, Cevec's amniocyte producer cells® (CAP®) and human embryonic kidney (HEK293) suspension cells are suitable platforms for designer EVs with high yields. Finally, we aimed to boost the EV secretion of HEK293 cells via chemical adjuvants and verified four compounds that heighten cellular EV secretion in a presumably cAMP-dependent manner. A combination of fenoterol, iodoacetamide, and dinitrophenol increased the EV yield in HEK293 cells threefold and cellular secretion rate fivefold.
Collapse
Affiliation(s)
- Christoph Keysberg
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
- International Graduate School for Molecular Medicine, Ulm University, Ulm, Germany
| | - Helga Schneider
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
2
|
IDH mutation and cancer stem cell. Essays Biochem 2022; 66:413-422. [PMID: 35611837 DOI: 10.1042/ebc20220008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small population of cells in human malignancies that resemble the biology of human pluripotent stem cells. CSCs are closely related to the critical hallmarks in human cancers, ranging from oncogenesis to disease progression, therapeutic resistance, and overall outcome. Mutations in isocitrate dehydrogenase (IDH) were recently identified as founder mutations for human cancers. An increasing amount of evidence indicates that IDH mutations are closely related to the establishment and maintenance of CSCs. Biosynthesis of oncometabolite, metabolic reprogramming, and epigenetic shifts establish distinctive molecular signatures in IDH-mutated CSCs. Additionally, IDH mutation and IDH-related pathways could be valuable molecular targets to impact the CSC components in human cancers and to improve the disease outcome.
Collapse
|
3
|
Wang Z, Yang L, Huang Z, Li X, Xiao J, Qu Y, Huang L, Wang Y. Identification of Prognosis Biomarkers for High-Grade Serous Ovarian Cancer Based on Stemness. Front Genet 2022; 13:861954. [PMID: 35360863 PMCID: PMC8964092 DOI: 10.3389/fgene.2022.861954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
In this paper, high-grade serous ovarian cancer (HGSOC) is studied, which is the most common histological subtype of ovarian cancer. We use a new analytical procedure to combine the bulk RNA-Seq sample for ovarian cancer, mRNA expression-based stemness index (mRNAsi), and single-cell data for ovarian cancer. Through integrating bulk RNA-Seq sample of cancer samples from TCGA, UCSC Xena and single-cell RNA-Seq (scRNA-Seq) data of HGSOC from GEO, and performing a series of computational analyses on them, we identify stemness markers and survival-related markers, explore stem cell populations in ovarian cancer, and provide potential treatment recommendation. As a result, 171 key genes for capturing stem cell characteristics are screened and one vital cancer stem cell subpopulation is identified. Through further analysis of these key genes and cancer stem cell subpopulation, more critical genes can be obtained as LCP2, FCGR3A, COL1A1, COL1A2, MT-CYB, CCT5, and PAPPA, are closely associated with ovarian cancer. So these genes have the potential to be used as prognostic biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Zhihang Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lili Yang
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Juan Xiao
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yinwei Qu
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.,College of Artificial Intelligence, Jilin University, Changchun, China
| |
Collapse
|
4
|
Mesenchymal Stromal Cells Isolated from Ectopic but Not Eutopic Endometrium Display Pronounced Immunomodulatory Activity In Vitro. Biomedicines 2021; 9:biomedicines9101286. [PMID: 34680403 PMCID: PMC8533241 DOI: 10.3390/biomedicines9101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
A comparative analysis of the cell surface markers and immunological properties of cell cultures originating from normal endometrium and endometrioid heterotopias of women with extragenital endometriosis was carried out. Both types of cell cultures expressed surface molecules typical of mesenchymal stromal cells and did not express hematopoietic and epithelial markers. Despite similar phenotype, the mesenchymal stromal cells derived from the two sources had different immunomodulation capacities: the cells of endometrioid heterotopias but not eutopic endometrium could suppress dendritic cell differentiation from monocytes as well as lymphocyte proliferation in allogeneic co-cultures. A comparative multiplex analysis of the secretomes revealed a significant increase in the secretion of pro-inflammatory mediators, including IL6, IFN-γ, and several chemokines associated with inflammation by the stromal cells of ectopic lesions. The results demonstrate that the stromal cells of endometrioid heterotopias display enhanced pro-inflammatory and immunosuppressive activities, which most likely impact the pathogenesis and progression of the disease.
Collapse
|
5
|
Gisina A, Novikova S, Kim Y, Sidorov D, Bykasov S, Volchenko N, Kaprin A, Zgoda V, Yarygin K, Lupatov A. CEACAM5 overexpression is a reliable characteristic of CD133-positive colorectal cancer stem cells. Cancer Biomark 2021; 32:85-98. [PMID: 34092615 DOI: 10.3233/cbm-203187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND CD133 (prominin-1) is the most commonly used molecular marker of the cancer stem cells (CSCs) that maintain tumor progression and recurrence in colorectal cancer. However, the proteome of CSCs directly isolated from colorectal tumors based on CD133 expression has never been investigated. OBJECTIVE To reveal biomarkers of CD133-positive colorectal CSCs. METHODS Thirty colorectal tumor samples were collected from patients undergoing bowel resection. CD133-positive and CD133-negative cells were isolated by FACS. Comparative proteomic profiling was performed by LC-MS/MS analysis combined with label-free quantification. Verification of differentially expressed proteins was performed by flow cytometry or ELISA. CD133-knockout Caco-2 and HT-29 cell lines were generated using CRISPR-Cas9 gene editing. RESULTS LC-MS/MS analysis identified 29 proteins with at least 2.5-fold higher expression in CD133-positive cells versus CD133-negative cells. Flow cytometry confirmed CEACAM5 overexpression in CD133-positive cells in all clinical samples analyzed. S100A8, S100A9, and DEFA1 were differentially expressed in only a proportion of the samples. CD133 knockout in the colon cancer cell lines Caco-2 and HT-29 did not affect the median level of CEACAM5 expression, but led to higher variance of the percentage of CEACAM5-positive cells. CONCLUSIONS High CEACAM5 expression in colorectal cancer cells is firmly associated with the CD133-positive colorectal CSC phenotype, but it is unlikely that CD133 directly regulates CEACAM5 expression.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Svetlana Novikova
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Dmitry Sidorov
- Department of Abdominal Surgery, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Stanislav Bykasov
- Department of Abdominal Surgery, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Nadezhda Volchenko
- Department of Oncomorphology, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Andrey Kaprin
- P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Kholodenko IV, Kim YS, Gisina AM, Lupatov AY, Kholodenko RV, Yarygin KN. Analysis of the Correlation between CD133 Expression on Human Colorectal Adenocarcinoma Cells HT-29 and Their Resistance to Chemotherapeutic Drugs. Bull Exp Biol Med 2021; 171:156-163. [PMID: 34057619 DOI: 10.1007/s10517-021-05188-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/25/2022]
Abstract
A correlation was found between chemoresistance of HT-29CD133+ and HT-29CD133- sublines obtained after cell sorting and high expression of CD133. On the other hand, knockout of the PROM1 gene and, as a consequence, the absence of CD133 expression did not increase the sensitivity of tumor cells to chemotherapy, which indicates the absence of a direct effect of CD133 on the formation of chemoresistance in colorectal cancer cells. Variants of the HT-29 line with complete or partial knockout of the PROM1 gene were equally sensitive to protein kinase inhibitors sorafenib and sunitinib. Notably, the highest resistance to mTOR inhibitors, temsirolimus and everolimus, was shown by cells with complete knockout of the PROM1 gene (KO-HT-29 (P1)). These findings suggest that CD133 is associated with the chemoresistance of colorectal cancer cells, but is not involved in its formation.
Collapse
Affiliation(s)
- I V Kholodenko
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - Ya S Kim
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A M Gisina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A Yu Lupatov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - R V Kholodenko
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
7
|
Wang H, Wang X, Xu L, Zhang J, Cao H. A pan-cancer perspective analysis reveals the opposite prognostic significance of CD133 in lower grade glioma and papillary renal cell carcinoma. Sci Prog 2021; 104:368504211010938. [PMID: 33878963 PMCID: PMC10454837 DOI: 10.1177/00368504211010938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
CD133 is a valuable prognostic marker in multiple types of cancer. However, the expression, methylation levels, and prognostic relevance of CD133 have not been evaluated in a pan-cancer perspective. The expression and methylation levels of CD133 across different types of cancer were determined using The Cancer Genome Atlas (TCGA) dataset. Univariate cox regression and Kaplan-Meier survival were used to determine the prognostic significance of CD133 expression and methylation. CD133 was highly expressed in papillary renal cell carcinoma (PRCC) or pancreatic adenocarcinoma (PAAD). Correspondingly, PAAD and PRCC had low CD133 methylation levels. Through pan-cancer perspective analysis, we found that CD133 high expression was a poor prognostic factor in lower grade glioma (LGG), while, CD133 high expression was a good prognostic factor in PRCC. Moreover, genes positively correlated with CD133 expression were associated with the poor clinical outcomes of LGG. In PRCC, genes negatively correlated with CD133 expression were correlated with the poor overall survival. Furthermore, CD133 expression levels were highly correlated with the CD133 methylation levels in LGG or PRCC. Correspondingly, CD133 hypermethylation was a good prognostic factor in LGG. On the contrary, CD133 hypomethylation was a good prognostic factor in PRCC. We also found that CD133 was highly expressed and hypomethylated in wild type IDH subgroup of LGG. CD133 was highly expressed and hypomethylated in low stages and type1 of PRCC. CD133 high expression and hypomethylation were bad prognostic factors in LGG, while, CD133 high expression and hypomethylation were good prognostic factors in PRCC.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Liangpu Xu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hua Cao
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
8
|
Li N, Li Y, Zheng P, Zhan X. Cancer Stemness-Based Prognostic Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front Endocrinol (Lausanne) 2021; 12:755805. [PMID: 34745015 PMCID: PMC8567176 DOI: 10.3389/fendo.2021.755805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) refer to cells with self-renewal capability in tumors. CSCs play important roles in proliferation, metastasis, recurrence, and tumor heterogeneity. This study aimed to identify immune-related gene-prognostic models based on stemness index (mRNAsi) in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), respectively. METHODS X-tile software was used to determine the best cutoff value of survival data in LUAD and LUSC based on mRNAsi. Tumor purity and the scores of infiltrating stromal and immune cells in lung cancer tissues were predicted with ESTIMATE R package. Differentially expressed immune-related genes (DEIRGs) between higher- and lower-mRNAsi subtypes were used to construct prognostic models. RESULTS mRNAsi was negatively associated with StromalScore, ImmuneScore, and ESTIMATEScore, and was positively associated with tumor purity. LUAD and LUSC samples were divided into higher- and lower-mRNAsi groups with X-title software. The distribution of immune cells was significantly different between higher- and lower-mRNAsi groups in LUAD and LUSC. DEIRGs between those two groups in LUAD and LUSC were enriched in multiple cancer- or immune-related pathways. The network between transcriptional factors (TFs) and DEIRGs revealed potential mechanisms of DEIRGs in LUAD and LUSC. The eight-gene-signature prognostic model (ANGPTL5, CD1B, CD1E, CNTFR, CTSG, EDN3, IL12B, and IL2)-based high- and low-risk groups were significantly related to overall survival (OS), tumor microenvironment (TME) immune cells, and clinical characteristics in LUAD. The five-gene-signature prognostic model (CCL1, KLRC3, KLRC4, CCL23, and KLRC1)-based high- and low-risk groups were significantly related to OS, TME immune cells, and clinical characteristics in LUSC. These two prognostic models were tested as good ones with principal components analysis (PCA) and univariate and multivariate analyses. Tumor T stage, pathological stage, or metastasis status were significantly correlated with DEIRGs contained in prognostic models of LUAD and LUSC. CONCLUSION Cancer stemness was not only an important biological process in cancer progression but also might affect TME immune cell infiltration in LUAD and LUSC. The mRNAsi-related immune genes could be potential biomarkers of LUAD and LUSC. Evaluation of integrative characterization of multiple immune-related genes and pathways could help to understand the association between cancer stemness and tumor microenvironment in lung cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Radiation Oncology, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Yalin Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Peixian Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Department of Radiation Oncology, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
- *Correspondence: Xianquan Zhan,
| |
Collapse
|
9
|
IMPACT OF CD44 EXPRESSION ON THE EFFECTIVENESS OF TREATMENT OF LOCALLY ADVANCED PRIMARY INOPERABLE BREAST CANCER PATIENTS. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-2-76-136-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Ye Z, Zheng M, Zeng Y, Wei S, Wang Y, Lin Z, Shu C, Xie Y, Zheng Q, Chen L. Bioinformatics Analysis Reveals an Association Between Cancer Cell Stemness, Gene Mutations, and the Immune Microenvironment in Stomach Adenocarcinoma. Front Genet 2020; 11:595477. [PMID: 33362856 PMCID: PMC7759681 DOI: 10.3389/fgene.2020.595477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), characterized by infinite proliferation and self-renewal, greatly challenge tumor therapy. Research into their plasticity, dynamic instability, and immune microenvironment interactions may help overcome this obstacle. Data on the stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA) and UCSC Xena Browser. The infiltrating immune cells in stomach adenocarcinoma (STAD) tissues were predicted using the CIBERSORT method. Differentially expressed genes (DEGs) between the normal and tumor tissues were used to construct prognostic models with weighted gene co-expression network analysis (WGCNA) and Lasso regression. The association between cancer stemness, gene mutations, and immune responses was evaluated in STAD. A total of 6,739 DEGs were identified between the normal and tumor tissues. DEGs in the brown (containing 19 genes) and blue (containing 209 genes) co-expression modules were used to perform survival analysis based on Cox regression. A nine-gene signature prognostic model (ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-ARHGAP8, and SYCE2) was constructed from 178 survival-related DEGs that were significantly related to overall survival, clinical characteristics, tumor microenvironment immune cells, TMB, and cancer-related pathways in STAD. Gene correlation was significant across the prognostic model, CNVs, and drug sensitivity. Our findings provide a prognostic model and highlight potential mechanisms and associated factors (immune microenvironment and mutation status) useful for targeting CSCs.
Collapse
Affiliation(s)
- Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Miao Zheng
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yi Zeng
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Shenghong Wei
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yi Wang
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhitao Lin
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Chen Shu
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yunqing Xie
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuhong Zheng
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
11
|
Lupatov AY, Gisina AM, Kim YS, Bykasov SA, Volchenko NN, Sidorov DV, Yarygin KN, Kholodenko RV. [Expression of ganglioside GD2 on colorectal adenocarcinoma cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:95-99. [PMID: 32116232 DOI: 10.18097/pbmc20206601095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using flow cytometry GD2 ganglioside expression was evaluated both on colorectal adenocarcinoma cell lines and on tumor tissue samples from colorectal cancer patients. The marker was found on EpCAM-positive tumor cells in 6 of 12 patients' samples but not on the HT29 and CaCo-2 cell lines. GD2 expression was not an exceptional feature of cancer stem cells, since its expression level was similar on CD133-positive and CD133-negative tumor cells. Thus, the presence of GD2 ganglioside was revealed on colorectal adenocarcinoma cells for the first time. This finding makes it possible to use targeted therapy to treat this disease.
Collapse
Affiliation(s)
- A Yu Lupatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A M Gisina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Y S Kim
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S A Bykasov
- Hertsen Moscow Oncology Research Center - branch of National Medical Research Radiological Center of the Ministry of Health, Moscow, Russia
| | - N N Volchenko
- Hertsen Moscow Oncology Research Center - branch of National Medical Research Radiological Center of the Ministry of Health, Moscow, Russia
| | - D V Sidorov
- Hertsen Moscow Oncology Research Center - branch of National Medical Research Radiological Center of the Ministry of Health, Moscow, Russia
| | - K N Yarygin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - R V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
12
|
Gisina AM, Kim YS, Potashnikova DM, Tvorogova AV, Yarygin KN, Lupatov AY. Proliferative Activity of Colorectal Cancer Cells with Different Levels of CD133 Expression. Bull Exp Biol Med 2019; 167:541-545. [DOI: 10.1007/s10517-019-04569-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 01/26/2023]
|
13
|
Torén W, Ansari D, Andersson R. Immunohistochemical investigation of prognostic biomarkers in resected colorectal liver metastases: a systematic review and meta-analysis. Cancer Cell Int 2018; 18:217. [PMID: 30602942 PMCID: PMC6307223 DOI: 10.1186/s12935-018-0715-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have investigated the prognostic role of biomarkers in colorectal liver metastases (CRLM). However, no biomarker has been established in routine clinical practice. The aim of this study was to scrutinize the current literature for biomarkers evaluated by immunohistochemistry as prognostic markers in patients with resected CRLM. Methods A systematic review was performed according to the PRISMA guidelines. Articles were identified in the PubMed database with selected search terms and by cross-references search. The REMARK quality criteria were applied. Markers were included if they reported the prognostic impact of immunohistochemical markers in a multivariable setting in relation to overall survival (OS). A meta-analysis was conducted when more than one original article provided survival data of a marker. Results In total, 26 biomarkers were identified as independent significant markers for OS in resected CRLM. These biomarkers were found to be involved in multiple oncogenic signalling pathways that control cell growth, apoptosis, angiogenesis and evasion of immune detection. Among these biomarker candidates were Ki-67, EGFR, p53, hTERT, CD34, TSP-1, KISS1, Aurora kinase A and CDX2. CD34 and TSP-1 were reported as significantly associated with survival by more than one study and where therefore pooled in a meta-analysis. Conclusion A number of independent prognostic biomarkers for resected CRLM were identified. However, most markers were evaluated in a retrospective setting with small patient cohorts, without external validation. Large, prospective, multicentre studies with standardised methods are needed before biomarkers can translated into the clinic.
Collapse
Affiliation(s)
- William Torén
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
14
|
Suvorov RE, Kim YS, Gisina AM, Chiang JH, Yarygin KN, Lupatov AY. Surface Molecular Markers of Cancer Stem Cells: Computation Analysis of Full-Text Scientific Articles. Bull Exp Biol Med 2018; 166:135-140. [DOI: 10.1007/s10517-018-4302-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 11/30/2022]
|
15
|
Karbanová J, Lorico A, Bornhäuser M, Corbeil D, Fargeas CA. Prominin-1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection. Stem Cells Transl Med 2017; 7:155-160. [PMID: 29271118 PMCID: PMC5788878 DOI: 10.1002/sctm.17-0223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/17/2017] [Indexed: 01/17/2023] Open
Abstract
The cell surface antigen prominin‐1 (alias CD133) has gained enormous interest in the past 2 decades and given rise to debates as to its utility as a biological stem and cancer stem cell marker. Important and yet often overlooked knowledge that is pertinent to its physiological function has been generated in other systems given its more general expression beyond primitive cells. This article briefly discusses the importance of particular biochemical features of CD133 with relation to its association with membrane microdomains (lipid rafts) and proper immunodetection. It also draws attention toward the adequate use of detergents and caveats that may apply to the interpretation of the results generated. Stem Cells Translational Medicine2018;7:155–160
Collapse
Affiliation(s)
- Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany.,DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- Department of Pathology, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
| | - Martin Bornhäuser
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany.,DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany
| |
Collapse
|