1
|
Severov V, Tsvetkov V, Barinov N, Babenko V, Klinov D, Pozmogova G. Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures. Polymers (Basel) 2022; 14:polym14102118. [PMID: 35632001 PMCID: PMC9144187 DOI: 10.3390/polym14102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.
Collapse
Affiliation(s)
- Viacheslav Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Correspondence: (V.S.); (V.T.)
| | - Vladimir Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Institute of Biodesign and Complex System Modeling, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky prospect Str. 29, 119991 Moscow, Russia
- Correspondence: (V.S.); (V.T.)
| | - Nikolay Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Vladislav Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str.6, 117198 Moscow, Russia
| | - Galina Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| |
Collapse
|
2
|
Varizhuk AM, Protopopova AD, Tsvetkov VB, Barinov NA, Podgorsky VV, Tankevich MV, Vlasenok MA, Severov VV, Smirnov IP, Dubrovin EV, Klinov DV, Pozmogova GE. Polymorphism of G4 associates: from stacks to wires via interlocks. Nucleic Acids Res 2018; 46:8978-8992. [PMID: 30107602 PMCID: PMC6158749 DOI: 10.1093/nar/gky729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
We examined the assembly of DNA G-quadruplexes (G4s) into higher-order structures using atomic force microscopy, optical and electrophoretic methods, NMR spectroscopy and molecular modeling. Our results suggest that parallel blunt-ended G4s with single-nucleotide or modified loops may form different types of multimers, ranging from stacks of intramolecular structures and/or interlocked dimers and trimers to wires. Decreasing the annealing rate and increasing salt or oligonucleotide concentrations shifted the equilibrium from intramolecular G4s to higher-order structures. Control antiparallel and hybrid G4s demonstrated no polymorphism or aggregation in our experiments. The modification that mimics abasic sites (1',2'-dideoxyribose residues) in loops enhanced the oligomerization/multimerization of both the 2-tetrad and 3-tetrad G4 motifs. Our results shed light on the rules that govern G4 rearrangements. Gaining control over G4 folding enables the harnessing of the full potential of such structures for guided assembly of supramolecular DNA structures for nanotechnology.
Collapse
Affiliation(s)
- Anna M Varizhuk
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Anna D Protopopova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vladimir B Tsvetkov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Nikolay A Barinov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Victor V Podgorsky
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria V Tankevich
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria A Vlasenok
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vyacheslav V Severov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Igor P Smirnov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Evgeniy V Dubrovin
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Dmitry V Klinov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Galina E Pozmogova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| |
Collapse
|
3
|
Varizhuk AM, Sekridova AV, Tankevich MV, Podgorsky VS, Smirnov IP, Pozmogova GE. Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. II. The putative role of G-quadruplex structures in genomic rearrangements. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817020093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Varizhuk AM, Sekridova AV, Tankevich MV, Podgorsky VS, Smirnov IP, Pozmogova GE. [Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. II. the putative role of G-quadruplex structures in genomic rearrangements]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:630-637. [PMID: 28026805 DOI: 10.18097/pbmc20166206630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three evolutionary conserved sites of Alu repeats (PQS2, PQS3 and PQS4) were shown to form stable inter- and intramolecular G-quadruplexes (GQs) in vitro. Structures and topologies of these GQs were elucidated using spectral methods. Self-association of G-rich Alu fragments was studied. Dimeric GQ formation from two distal identical or different putative quadruplex sites - (PQS2)2, (PQS3)2 or PQS2-PQS3 - within one lengthy DNA strand was demonstrated by a FRET-based method. Oligomer PQS4 (folded into a parallel intramolecular GQ) was shown to form stacks of quadruplexes that are stabilized by stacking interactions of external G-tetrads (this was confirmed by DOSY NMR, AFM microscopy and differential CD spectroscopy). Comparative analysis of the properties of various GQs allowed us to put forward a hypothesis of two general mechanisms of intermolecular GQ-dependant genomic rearrangements: 1) formation of a dimeric GQs; 2) association of pre-folded intramolecular parallel GQs from different strands into GQ-stacks. Thus, the observed co-localization of G-rich motifs of Alu elements with double-strand break hotspots and rearrangement hotspots may be accounted for by the specific secondary structure of these motifs. At the same time, this is likely primarily due to high abundance of such G-rich Alu fragments in the genome.
Collapse
Affiliation(s)
- A M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A V Sekridova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - M V Tankevich
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - V S Podgorsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - I P Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - G E Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|