1
|
Aiello A, Calabrone L, Noonan DM, Corradino P, Nofri S, Cristoni S, Accardi G, Candore G, Caruso C, Zinellu A, Albini A. Effect of a Phytochemical-Rich Olive-Derived Extract on Anthropometric, Hematological, and Metabolic Parameters. Nutrients 2024; 16:3068. [PMID: 39339668 PMCID: PMC11435251 DOI: 10.3390/nu16183068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Extra virgin olive oil is a fundamental component of the Mediterranean diet. It contains several molecules that sustain human well-being by modulating cellular metabolism and exerting antioxidant, anti-inflammatory, and anti-ageing effects to protect normal tissues, and it can exert anti-angiogenic and pro-apoptotic effects on cancer cells. Metabolites found in different parts of the olive tree, including leaves, also possess properties that might help in cancer prevention and promote wellness in aging. Olive mill wastewater (OMWW), a liquid residue produced during olive oil extraction, represents an environmental issue. However, it is rich in phytochemicals with potential beneficial properties. Dietary supplements based on OMWW can be produced for nutritional supplementation with advantages to the ecology. PURPOSE This work aims to measure hematochemical, anthropometric, and metabolomic parameters in volunteers taking an OMWW dietary supplement, Oliphenolia® (OMWW-OL). METHODS The supplementation of OMWW-OL 25 mL twice daily for 30 days was tested on a pilot cohort of volunteers with characteristics close to metabolic syndrome. Hematochemical, anthropometric, serum biomarkers and serum metabolomic parameters were analyzed before the intervention, at 30 days, and 30 days after stopping consumption. RESULTS A total of 29 volunteers were enrolled, and 23 completed the study. The participants' parameters at baseline were measured, and then twice daily at 30 days of treatment and 30 days after assumption discontinuation. Although treatment was with an olive derivative, their weight did not increase. Their body mass index, instead of augmenting, slightly decreased, particularly in the women. Also, hydration increased, especially in the women, while blood pressure, glycemia, and insulin decreased. Cholesterol, high-density lipoproteins, and triglycerides were stable, and LDL levels decreased, while vitamin D levels, alongside calcium, perceptibly increased. Albumin also increased. All the values were in support of an equilibrium, with no damaging effects. By mass spectrometry analysis, we also found favorable changes in the vitamin D/histamine and homocysteine/methionine ratios, an increase in a new metabolite of unknown formula, and the vitamin D/unknown metabolite ratio. CONCLUSIONS Supplementation of OMWW-OL has no detrimental effects and might imply the beneficial modulation of several biological parameters. Although this is a small pilot study, with limited potency, it preliminarily suggests that the OMWW extract use could be potentially valuable for people at risk of metabolic syndrome. Some of these parameters could also be relevant in supporting healthy ageing and in cancer prevention.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Luana Calabrone
- ISB—Ion Source & Biotecnologie Srl, Rho, 20017 Milan, Italy; (L.C.); (S.C.)
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Paola Corradino
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Sara Nofri
- University of Florence, 50139 Florence, Italy;
| | - Simone Cristoni
- ISB—Ion Source & Biotecnologie Srl, Rho, 20017 Milan, Italy; (L.C.); (S.C.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| |
Collapse
|
2
|
Cristoni S, Bernardi LR, Malvandi AM, Larini M, Longhi E, Sortino F, Conti M, Pantano N, Puccio G. A case of personalized and precision medicine: Pharmacometabolomic applications to rare cancer, microbiological investigation, and therapy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8976. [PMID: 33053249 DOI: 10.1002/rcm.8976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Advances in metabolomics, together with consolidated genetic approaches, have opened the way for investigating the health of patients using a large number of molecules simultaneously, thus providing firm scientific evidence for personalized medicine and consequent interventions. Metabolomics is an ideal approach for investigating specific biochemical alterations occurring in rare clinical situations, such as those caused by rare associations between comorbidities and immunosuppression. METHODS Metabolomic database matching enables clear identification of molecular factors associated with a metabolic disorder and can provide a rationale for elaborating personalized therapeutic protocols. Mass spectrometry (MS) forms the basis of metabolomics and uses mass-to-charge ratios for metabolite identification. Here, we used an MS-based approach to diagnose and develop treatment options in the clinical case of a patient afflicted with a rare disease further complicated by immunosuppression. The patient's data were analyzed using proprietary databases, and a personalized and efficient therapeutic protocol was consequently elaborated. RESULTS The patient exhibited significant alterations in homocysteine:methionine and homocysteine:thiodiglycol acid plasma concentration ratios, and these were associated with low immune system function. This led to cysteine concentration deficiency causing extreme oxidative stress. Plasmatic thioglycolic acid concentrations were initially altered and were used for therapeutic follow-up and to evaluate cysteine levels. CONCLUSIONS An MS-based pharmacometabolomics approach was used to define a personalized protocol in a clinical case of rare peritoneal carcinosis with confounding immunosuppression. This personalized protocol reduced both oxidative stress and resistance to antibiotics and antiviral drugs.
Collapse
Affiliation(s)
- Simone Cristoni
- Ion Source & Biotechnologies (ISB) srl, Biotechnology, Bresso, Italy
| | - Luigi Rossi Bernardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, Biotechnology and cardiovascular medicine, Milan, Italy
| | - Amir Mohammad Malvandi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, Biotechnology and cardiovascular medicine, Milan, Italy
| | - Martina Larini
- Ion Source & Biotechnologies (ISB) srl, Biotechnology, Bresso, Italy
| | - Ermanno Longhi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, Biotechnology and cardiovascular medicine, Milan, Italy
| | | | - Matteo Conti
- University Hospital of Bologna Sant'Orsola-Malpighi Polyclinic, Analytical Chemistry, Bologna, Italy
| | | | - Giovanni Puccio
- Emmanuele Scientific Research Association, Analytical Chemistry, Palermo, Italy
| |
Collapse
|
3
|
Metabolomics Community in Russia: History of Development, Key Participants, and Results. BIOTECH 2020; 9:biotech9040020. [PMID: 35822823 PMCID: PMC9258313 DOI: 10.3390/biotech9040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/05/2022] Open
Abstract
Metabolomics is the latest trend in the “-omics” sciences, of which technologies are widely used today in all life sciences. Metabolomics gave impetus to the description of biochemical processes that occur in many organisms, search for new biomarkers of disease, and laid the foundation for new clinical laboratory diagnostics. The purpose of this review is to show how metabolomics is represented in Russian science, what main research areas were chosen, and to demonstrate the successes and main achievements of Russian scientists in this field. The review is dedicated to the 10th anniversary of Russian metabolomics and also touches on the history of the formation of Russian metabolomics and prospects for the future.
Collapse
|
4
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Archakov AI. [Ten years of the Russian metabolomics: history of development and achievements]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:279-293. [PMID: 32893819 DOI: 10.18097/pbmc20206604279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metabolomics is one of the omics sciences, the technologies of which are widely used today in many life sciences. Its application influenced the discovery of new biomarkers of diseases, the description of biochemical processes occurring in many organisms, laid the basis for a new generation of clinical laboratory diagnostics. The purpose of this review is to show how metabolomics is represented in the studies of Russian scientists, to demonstrate the main directions and achievements of the Russian science in this field. The review also highlights the history of metabolomics, existing problems and the place of Russian metabolomics in their solution.
Collapse
Affiliation(s)
- P G Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - D L Maslov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Trifonova OP, Maslov DL, Balashova EE, Urazgildeeva GR, Abaimov DA, Fedotova EY, Poleschuk VV, Illarioshkin SN, Lokhov PG. Parkinson's Disease: Available Clinical and Promising Omics Tests for Diagnostics, Disease Risk Assessment, and Pharmacotherapy Personalization. Diagnostics (Basel) 2020; 10:E339. [PMID: 32466249 PMCID: PMC7277996 DOI: 10.3390/diagnostics10050339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is the second most frequent neurodegenerative disease, representing a significant medical and socio-economic problem. Modern medicine still has no answer to the question of why Parkinson's disease develops and whether it is possible to develop an effective system of prevention. Therefore, active work is currently underway to find ways to assess the risks of the disease, as well as a means to extend the life of patients and improve its quality. Modern studies aim to create a method of assessing the risk of occurrence of Parkinson's disease (PD), to search for the specific ways of correction of biochemical disorders occurring in the prodromal stage of Parkinson's disease, and to personalize approaches to antiparkinsonian pharmacotherapy. In this review, we summarized all available clinically approved tests and techniques for PD diagnostics. Then, we reviewed major improvements and recent advancements in genomics, transcriptomics, and proteomics studies and application of metabolomics in PD research, and discussed the major metabolomics findings for diagnostics and therapy of the disease.
Collapse
Affiliation(s)
- Oxana P. Trifonova
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| | - Dmitri L. Maslov
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| | - Elena E. Balashova
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| | - Guzel R. Urazgildeeva
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Denis A. Abaimov
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Ekaterina Yu. Fedotova
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Vsevolod V. Poleschuk
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Sergey N. Illarioshkin
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Petr G. Lokhov
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| |
Collapse
|
6
|
Abstract
More than one-third of adults in the USA have obesity, which causes, exacerbates or adversely impacts numerous medical comorbidities, including diabetes mellitus and cardiovascular disease. Despite intensive lifestyle modifications, the disease severity warrants further aggressive intervention, including pharmacotherapy, medical devices and bariatric surgery. Noninvasive anti-obesity drugs have thus now resurfaced as targeted adjunctive therapeutic approaches to intensive lifestyle intervention, bridging the gap between lifestyle and bariatric surgery. In this Review, we discuss FDA-approved anti-obesity drugs in terms of safety and efficacy. As most of these drugs have a mean percentage weight loss reported in clinical trials but individual variations in response rates, a future direction of obesity pharmacotherapy research might include the potential for personalized medicine to target early responders to these anti-obesity drugs.
Collapse
Affiliation(s)
- Gitanjali Srivastava
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| | - Caroline M Apovian
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| |
Collapse
|