1
|
Dorogin J, Benz MA, Moore CJ, Benoit DSW, Hettiaratchi MH. Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release. Cell Mol Bioeng 2024; 17:305-312. [PMID: 39372554 PMCID: PMC11450113 DOI: 10.1007/s12195-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis. Methods High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA). Results Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies. Conclusions Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Morrhyssey A. Benz
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| | - Cameron J. Moore
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Danielle S. W. Benoit
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Marian H. Hettiaratchi
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| |
Collapse
|
2
|
Gordeeva AI, Valueva AA, Ershova MO, Rybakova EE, Shumov ID, Kozlov AF, Ziborov VS, Zavialova MG, Zgoda VG, Ivanov YD, Archakov AI, Pleshakova TO. Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy. Int J Mol Sci 2023; 24:ijms24108999. [PMID: 37240343 DOI: 10.3390/ijms24108999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.
Collapse
Affiliation(s)
| | | | - Maria O Ershova
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | - Ivan D Shumov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | - Andrey F Kozlov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | - Vadim S Ziborov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | - Victor G Zgoda
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | - Yuri D Ivanov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | | |
Collapse
|
3
|
van Wijk KJ, Leppert T, Sun Z, Deutsch EW. Does the Ubiquitination Degradation Pathway Really Reach inside of the Chloroplast? A Re-Evaluation of Mass Spectrometry-Based Assignments of Ubiquitination. J Proteome Res 2023. [PMID: 37092802 DOI: 10.1021/acs.jproteome.3c00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A recent paper in Science Advances by Sun et al. claims that intra-chloroplast proteins in the model plant Arabidopsis can be polyubiquitinated and then extracted into the cytosol for subsequent degradation by the proteasome. Most of this conclusion hinges on several sets of mass spectrometry (MS) data. If the proposed results and conclusion are true, this would be a major change in the proteolysis/proteostasis field, breaking the long-standing dogma that there are no polyubiquitination mechanisms within chloroplast organelles (nor in mitochondria). Given its importance, we reanalyzed their raw MS data using both open and closed sequence database searches and encountered many issues not only with the results but also discrepancies between stated methods (e.g., use of alkylating agent iodoacetamide (IAA)) and observed mass modifications. Although there is likely enrichment of ubiquitination signatures in a subset of the data (probably from ubiquitination in the cytosol), we show that runaway alkylation with IAA caused extensive artifactual modifications of N termini and lysines to the point that a large fraction of the desired ubiquitination signatures is indistinguishable from artifactual acetamide signatures, and thus, no intra-chloroplast polyubiquitination conclusions can be drawn from these data. We provide recommendations on how to avoid such perils in future work.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
4
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Liu J, Li J, Sun Z, Duan Y, Wang F, Wei G, Yang JH. Bcl-2-associated transcription factor 1 Ser290 phosphorylation mediates DNA damage response and regulates radiosensitivity in gastric cancer. J Transl Med 2021; 19:339. [PMID: 34372878 PMCID: PMC8351323 DOI: 10.1186/s12967-021-03004-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA damage response plays critical roles in tumor pathogenesis and radiotherapy resistance. Protein phosphorylation is a critical mechanism in regulation of DNA damage response; however, the key mediators for radiosensitivity in gastric cancer still needs further exploration. METHODS A quick label-free phosphoproteomics using high-resolution mass spectrometry and an open search approach was applied to paired tumor and adjacent tissues from five patients with gastric cancer. The dysregulated phosphoproteins were identified and their associated-pathways analyzed using Gene Set Enrichment Analysis (GSEA). The mostly regulated phosphoproteins and their potential functions were validated by the specific antibodies against the phosphorylation sites. Specific protein phosphorylation was further analyzed by functional and clinical approaches. RESULTS 832 gastric cancer-associated unique phosphorylated sites were identified, among which 25 were up- and 52 down-regulated. Markedly, the dysregulated phosphoproteins were primarily enriched in DNA-damage-response-associated pathways. Particularly, the phosphorylation of Bcl-2-associated transcription factor 1 (BCLAF1) at Ser290 was significantly upregulated in tumor. The upregulation of BCLAF1 Ser290 phosphorylation (pBCLAF1 (Ser290)) in tumor was confirmed by tissue microarray studies and further indicated in association with poor prognosis of gastric cancer patients. Eliminating the phosphorylation of BCLAF1 at Ser290 suppressed gastric cancer (GC) cell proliferation. Upregulation of pBCLAF1 (Ser290) was found in association with irradiation-induced γ-H2AX expression in the nucleus, leading to an increased DNA damage repair response, and a marked inhibition of irradiation-induced cancer cell apoptosis. CONCLUSIONS The phosphorylation of BCLAF1 at Ser290 is involved in the regulation of DNA damage response, indicating an important target for the resistance of radiotherapy.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Cancer Research Center, and Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingyi Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhao Sun
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Cancer Research Center, and Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fengqin Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Guangwei Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education, Cancer Research Center, and Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Bagwan N, El Ali HH, Lundby A. Proteome-wide profiling and mapping of post translational modifications in human hearts. Sci Rep 2021; 11:2184. [PMID: 33500497 PMCID: PMC7838296 DOI: 10.1038/s41598-021-81986-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Post translational modifications (PTMs) are covalent modifications of proteins that can range from small chemical modifications to addition of entire proteins. PTMs contribute to regulation of protein function and thereby greatly increase the functional diversity of the proteome. In the heart, a few well-studied PTMs, such as phosphorylation and glycosylation, are known to play essential roles for cardiac function. Yet, only a fraction of the ~ 300 known PTMs have been studied in a cardiac context. Here we investigated the proteome-wide map of PTMs present in human hearts by utilizing high-resolution mass spectrometry measurements and a suite of PTM identification algorithms. Our approach led to identification of more than 150 different PTMs across three of the chambers in human hearts. This finding underscores that decoration of cardiac proteins by PTMs is much more diverse than hitherto appreciated and provides insights in cardiac protein PTMs not yet studied. The results presented serve as a catalogue of which PTMs are present in human hearts and outlines the particular protein and the specific amino acid modified, and thereby provides a detail-rich resource for exploring protein modifications in human hearts beyond the most studied PTMs.
Collapse
Affiliation(s)
- Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Henrik H El Ali
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenahagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|