1
|
Sitnova A, Svetozarskiy S. Modern Technologies in Diagnosis of Fungal Keratitis (Review). Sovrem Tekhnologii Med 2023; 15:73-84. [PMID: 37389020 PMCID: PMC10306968 DOI: 10.17691/stm2023.15.2.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 07/01/2023] Open
Abstract
Traumas and infectious diseases of the eye play a leading role in the development of corneal blindness responsible for 1.5-2 million cases of vision loss per year. To date, the issue of reducing the incidence of fungal keratitis is acute and needs to be solved worldwide. Trauma as a risk factor for corneal fungal disease is thought to be prevalent in developing countries due to agricultural involvement, while in developed countries the onset of the disease is predisposed by medical advances such as contact vision correction and modern ophthalmic surgery. Thorough analysis of the pathogenesis gives the possibility to describe the action of fungal enzymes, biofilm formation, and the resistance mechanism, which on the one hand explains the aggressive course of the disease and difficulties in its diagnosis, and on the other hand, it encourages searching for new methods of diagnosis and treatment. The non-specific clinical picture of fungal keratitis, the variety and availability of antibiotics nowadays become an obstacle for rapid detection of this pathology. Low public awareness and late visit to an ophthalmologist are also a barrier to successful combating the increasing incidence of fungal keratitis. Belated diagnosis, increasing resistance of fungi to antibiotics, and lack of registered antifungal ophthalmic drugs justify poor treatment efficacy resulting in decreased visual acuity or vision loss. Existing diagnostic methods need systematization and detailed comparison, identifying the advantages and disadvantages of each. This review considers causative agents and their influence on pathogenesis of the disease, describes difficulties of fungal keratitis diagnosis and possible ways of overcoming these problems using new developments, and also outlines further prospects of research in this direction.
Collapse
Affiliation(s)
- A.V. Sitnova
- 6-year Student, Medical Faculty; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - S.N. Svetozarskiy
- Ophthalmologist; Privolzhsky District Medical Center of the Federal Medico-Biological Agency (FMBA), 14 Ilyinskaya St., Nizhny Novgorod, 603000, Russia Tutor, Department of Eye Diseases; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
2
|
Shi D, Li Y, Shi X, Yao M, Wu D, Zheng Y, Lin Q, Yang Y. Transcriptional expression of CXCL10 and STAT1 in lupus nephritis and the intervention effect of triptolide. Clin Rheumatol 2023; 42:539-548. [PMID: 36374433 PMCID: PMC9873713 DOI: 10.1007/s10067-022-06400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study screened out the key genes associated with the occurrence and development of lupus nephritis (LN) using bioinformatics methods, and then explored the expression of key genes in LN and the inhibitory effect of triptolide. METHODS The GEO2R online tool in the GEO database was used to perform differential analysis of gene expression in LN tissues and normal kidney tissues. The GO function and KEGG pathway enrichment analysis of differentially expressed genes (DEGs), STRING, and Cytoscape software were used to build a protein-protein interaction network (PPI) to screen out the Hub gene. Mouse glomerular mesangial cells (MMC) were randomly divided into a control group, an interferon-γ (IFN-γ) stimulation group, and a triptolide intervention group. The relative expression of CXCL10 mRNA in each group was detected by real-time fluorescent quantitative PCR (RT-PCR). CXCL10 secretion was detected by enzyme-linked immunosorbent assay (ELISA), and Western blot was used to detect the expression of the JAK/STAT1 signaling pathway-related proteins STAT1 and p-STAT1 in each group. RESULTS Bioinformatics showed that there were 22 DEGs expression differences in the GEO database. The GO enrichment analysis showed that biological process (BP) such as the type I interferon signaling pathway, innate immune response, IFN-γ-mediated signaling pathway, virus defense response, and immune response were significantly regulated by DEGs. Through the combination of String database analysis and cytoscape software, it was found that STAT1 and CXCL10 are closely related to LN. Experimental results showed that IFN-γ induces the expression of CXCL10 mRNA and protein by activating the JAK/STAT1 signaling pathway, while triptolide inhibits the expression of CXCL10 mRNA and protein by inhibiting the JAK/STAT1 signaling pathway. CONCLUSION STAT1 and CXCL10 are the key genes in the occurrence and development of LN. IFN-γ induces the expression of CXCL10 by activating the JAK/STAT1 signaling pathway, while triptolide inhibits the expression of CXCL10 by blocking the JAK/STAT1 signaling pathway. Inhibition of the JAK/STAT1 signaling pathway and CXCL10 expression is expected to become a potential target for the treatment of LN. Key Points • Bioinformatics showed that there were 22 DEGs expression differences in the GEO database. • Through the combination of String database analysis and Cytoscape software, it was found that STAT1 and CXCL10 are closely related to LN. • Experimental results showed that IFN-γ induces the expression of CXCL10 mRNA and protein by activating the JAK/STAT1 signaling pathway, while triptolide inhibits the expression of CXCL10 mRNA and protein by inhibiting the JAK/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaomei Shi
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dan Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuhui Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qing Lin
- Department of Clinical Laboratory, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Sha XY, Shi Q, Liu L, Zhong JX. Update on the management of fungal keratitis. Int Ophthalmol 2021; 41:3249-3256. [PMID: 33929644 DOI: 10.1007/s10792-021-01873-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this article is to introduce the recent advance on the studies of fungal keratitis published over past 5 years. METHODS We performed literature review of articles published on PubMed, Google Scholar, CNKI and Web of Science relevant to the diagnosis, pathogenesis and novel treatment of fungal keratitis. RESULTS Excessive inflammation can lead to stromal damage and corneal opacification, hence the research on immune mechanism provides many potential therapeutic targets for fungal keratitis. Many researchers discussed the importance of earlier definitive diagnosis and were trying to find rapid and accurate diagnostic methods of pathogens. Develop new drug delivery systems and new routes of administration with better corneal penetration, prolonged ocular residence time, and better mucoadhesive properties is also one of the research hotspots. Additionally, many novel therapeutic agents and methods have been gradually applied in clinical ophthalmology. CONCLUSION The diagnosis and treatment of fungal keratitis are still a challenge for ophthalmologist, and many researches provide new methods to conquer these problems.
Collapse
Affiliation(s)
- Xiao-Yuan Sha
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qi Shi
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lian Liu
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jing-Xiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Zheng XS, Zheng H, Xu D, Liu PP, Li B, Cao ZM, Liu Y, Liu Y. Effect of zymosan on the expression and function of the gap-junction protein connexin 43 in human corneal fibroblasts. Int J Ophthalmol 2021; 14:341-348. [PMID: 33747807 DOI: 10.18240/ijo.2021.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
AIM To study the effect of zymosan, a ligand found on the surface of fungi, on gap junctional intercellular communication (GJIC) in cultured human corneal fibroblasts (HCFs). METHODS Zymosan was added to the medium of cultured HCFs with or without the administration of mitogen-activated protein kinase (MAPK) inhibitors or the inhibitor kappa B kinase 2 (IKK2) inhibitor IV. The protein and mRNA levels of connexin 43 (Cx43) in HCFs were measured by Western blot, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The GJIC activity was tested using a dye-coupling assay. RESULTS The reduction of Cx43 protein and mRNA levels as well as a significant decrease in GJIC activity were observed in cultured HCFs when zymosan was added into the culture medium. Compared with controls (no zymosan), the protein level of Cx43 was reduced by 45% and 54% in the presence of zymosan at 200 and 600 µg/mL, respectively (P<0.05); and it was reduced by 45%, 48%, and 75% in the presence of zymosan (600 µg/mL) for 24, 36, and 48h, respectively (P<0.05). The mRNA expression of Cx43 was reduced by 98% in the presence of zymosan (P<0.05). The effects of zymosan on Cx43 expression and GJIC activity were attenuated by the administration of PD98059 [an extracellular signal-regulated kinase (ERK) signaling inhibitor] (P<0.05), c-Jun NH2-terminal kinase (JNK) inhibitor II (P<0.05), and IKK2 inhibitor IV (P<0.05). CONCLUSION Zymosan inhibits the activity of GJIC in cultured HCFs. This effect is likely regulated via the nuclear factor-κB (NF-κB), MAPK/ERK, and JNK signaling pathways. The inhibitory effects of zymosan on Cx43 expression and GJIC activity in HCFs may induce damage of corneal stroma during corneal fungal infection.
Collapse
Affiliation(s)
- Xiao-Shuo Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environmental Science and Engineering College, Dalian Maritime University, Dalian 116027, Liaoning Province, China
| | - Ping-Ping Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Bing Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Zi-Mu Cao
- Institute of Environmental Systems Biology, Environmental Science and Engineering College, Dalian Maritime University, Dalian 116027, Liaoning Province, China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| |
Collapse
|
5
|
Zhang ZH, Teng F, Sun QX, Wang SZ, Liu C, Zhao GQ. Rapamycin liposome gutta inhibiting fungal keratitis of rats. Int J Ophthalmol 2019; 12:536-541. [PMID: 31024803 DOI: 10.18240/ijo.2019.04.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
AIM To study the therapeutic effect of rapamycin liposome eyedrops on fungal keratitis (FK) and its effect on the expression of monocyte chemotactic protein-1 (MCP-1). METHODS This study adopted the thin film dispersion method to prepare rapamycin liposomes eyedrops, as well as used the orthogonal design to analyze and study main influencing factors that affected the quality of liposomes. Totally 96 healthy Wistar rats were randomly divided into four groups: normal control group (A), FK blank control group (B), FK blank liposomes control group (C), and 30 FK rapamycin liposome treatment group (D). Groups B, C, and D were first prepared as FK animal models. The corneal response was recorded in details on day 1, 3, 5, 7, and 14 after modeling. Six rats were obtained and immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of MCP-1 protein and mRNA, respectively. RESULTS The severity of corneal lesions in the rapamycin treatment group was reduced, and the clinical score of the slit lamp examination was lower than that of Groups B and C (P<0.01). The expression of MCP-1 in rapamycin treatment group was significantly inhibited, comparing to that of groups B and C (P<0.01). CONCLUSION Liposome is a good drug carrier for rapamycin. Rapamycin has a good therapeutic effect on FK. It can reduce FK fungal burden and significantly inhibit the expression of MCP-1 protein and mRNA.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- Department of Ophthalmology, Qingdao Central Hospital, the Second Clinical Hospital of Qingdao University, Qingdao 266042, Shandong Province, China
| | - Feng Teng
- Department of Ophthalmology, Qingdao Central Hospital, the Second Clinical Hospital of Qingdao University, Qingdao 266042, Shandong Province, China
| | - Qing-Xiu Sun
- Department of Ophthalmology, Qingdao Central Hospital, the Second Clinical Hospital of Qingdao University, Qingdao 266042, Shandong Province, China
| | - Shu-Zhen Wang
- Department of Ophthalmology, Qingdao Central Hospital, the Second Clinical Hospital of Qingdao University, Qingdao 266042, Shandong Province, China
| | - Chao Liu
- Department of Ophthalmology, Qingdao Central Hospital, the Second Clinical Hospital of Qingdao University, Qingdao 266042, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| |
Collapse
|
6
|
Sahan-Firat S, Temiz-Resitoglu M, Guden DS, Kucukkavruk SP, Tunctan B, Sari AN, Kocak Z, Malik KU. Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway. Inflammation 2018; 41:276-298. [PMID: 29110153 DOI: 10.1007/s10753-017-0686-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKβ)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKβ, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.
Collapse
Affiliation(s)
- Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Sefika Pinar Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Zumrut Kocak
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
7
|
Hou HW, Wang JM, Wang D, Wu R, Ji ZL. Triptolide exerts protective effects against fibrosis following ileocolonic anastomosis by mechanisms involving the miR-16-1/HSP70 pathway in IL-10-deficient mice. Int J Mol Med 2017. [PMID: 28627592 PMCID: PMC5505014 DOI: 10.3892/ijmm.2017.3016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Surgeries, particularly ileocecal resection (ICR), are often required in the treatment of Crohn's disease (CD). However, recurrences are common for patients who undergo ICR, and anastomotic fibrosis is the main cause of re-operation. The present study aimed to investigate the therapeutic effects of triptolide (TPL) in ameliorating fibrosis following ileocolonic anastomosis. A model of IL-10−/− mice undergoing ICR was used to study post surgical inflammation and fibrosis of anastomosis. For this purpsose, interleukin (IL)-10−/− mice were randomly divided into 3 groups as follows: the control group, the saline-treated group subjected to ICR (ST-ICR) and the TPL-treated group subjected to ICR (TT-ICR). Wild-type (WT) mice of matching ages were assigned to the WT group. The effects of TPL treatment on ileocolonic anastomosis were determined by histopathological evaluation, western blot analysis and ELISA. The analysis of the effects of TPL treatment on microRNA-16-1 (miR-16-1) and heat shock protein 70 (HSP70) expression was carried out by RT-qPCR and western blot analysis. Compared with the control group, significantly higher inflammation scores following anastomosis were observed in the ST-ICR group (P<0.05), although reversion was observed in the TT-ICR group, which was consistent with changes in the area of CD4+ cell infiltration. The elevated fibrosis scores and the overexpression of procollagen I and III in the ST-ICR group were all inhibited by TPL. With an increase in the severity of inflammation and fibrosis, the levels of IL-6, tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) increased; however, a significant decrease in these levels was observed following treatment with TPL (P<0.05). The results of RT-qPCR revealed that the upregulated miR-16-1 levels in the ST-ICR group were significantly reduced by TPL. HSP70, which can be inhibited by miR-16-1, ameliorates anastomotic inflammation and fibrosis. Thus, the present study demonstrates that TPL exerts a protective effect against fibrosis following anastomosis in CD. The miR-16-1/HSP70 signaling pathway, which can be regulated by TPL, may thus represent a novel therapeutic option in CD that deserves further investigation.
Collapse
Affiliation(s)
- Hong-Wei Hou
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Jin-Min Wang
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Wu
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Zhen-Ling Ji
- Department of General Surgery, Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|