1
|
Milcu AI, Anghel FM, Romanescu M, Chis AR, Anghel A, Boruga O. Plasma miR-19b, miR-34a, and miR-146a expression in patients with type 2 diabetes mellitus and cataract: A pilot study. BIOMOLECULES & BIOMEDICINE 2024; 24:537-544. [PMID: 38018996 PMCID: PMC11088884 DOI: 10.17305/bb.2023.9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Cataract is among the most common ocular complications in diabetes mellitus (DM). While microRNA (miRNA) dysregulations in DM have been previously reported, consensus is still lacking concerning miRNA expression in cataract. Furthermore, the miRNA profile in diabetic cataract patients remains largely unexplored, and data on plasma expression levels are limited. Our study aimed to assess the plasma levels of three distinct miRNA species (hsa-miR-19b, hsa-miR-34a, and hsa-miR-146a) implicated in the development of cataract and/or DM.We investigated the circulating miRNA expression in DM patients diagnosed with cataract, compared to a non-DM cataract group. We employed qRT-PCR for relative quantification experiments and subsequently conducted a correlation analysis between miRNA expression levels and clinical characteristics. Our findings reveal that hsa-miR-34a and hsa-miR-146a are differentially expressed in the two cohorts. However, no significant correlation was observed between the clinical variables and miRNA levels. In summary, our results suggest a potential role for hsa-miR-34a and hsa-miR-146a in the biology of diabetic cataract.
Collapse
Affiliation(s)
- Adina Iuliana Milcu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Ophthalmology, Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Ophthalmology, Municipal Emergency Clinical Hospital, Timisoara, Romania
| | - Flavia Medana Anghel
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirabela Romanescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Aimee Rodica Chis
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrei Anghel
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Ovidiu Boruga
- Discipline of Ophthalmology, Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Ophthalmology, Municipal Emergency Clinical Hospital, Timisoara, Romania
| |
Collapse
|
2
|
Hou M, Luo F, Ding Y, Bao X, Chen X, Liu L, Wu M. Let-7c-3p suppresses lens epithelial-mesenchymal transition by inhibiting cadherin-11 expression in fibrotic cataract. Mol Cell Biochem 2024; 479:743-759. [PMID: 37171723 DOI: 10.1007/s11010-023-04758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFβ2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFβ2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFβ2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Furong Luo
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, 570311, China
| | - Yujie Ding
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xuan Bao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China.
| |
Collapse
|
3
|
Feng L, Wei Y, Sun Y, Zhou L, Bi S, Chen W, Xiang W. MIR34A modulates lens epithelial cell apoptosis and cataract development via the HK1/caspase 3 signaling pathway. Aging (Albany NY) 2023; 15:6331-6345. [PMID: 37414399 PMCID: PMC10373963 DOI: 10.18632/aging.204854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Cataracts are the leading cause of blindness in the world. Age is a major risk factor for cataracts, and with increasing aging, the burden of cataracts will grow, but the exact details of cataractogenesis remain unclear. A recent study showed that microRNA-34a (MIR34A) is involved in the development of cataracts, but the underlying pathogenesis remains obscure. Here, our results of microRNA target prediction showed that hexokinase 1 (HK1) is one of the genes targeted by MIR34A. Based on this finding, we focused on the function of MIR34A and HK1 in the progress of cataracts, whereby the human lens epithelial cell line SRA01/04 and mouse lens were treated with MIR34A mimics and HK1 siRNA. We found that HK1 mRNA is a direct target of MIR34A, whereby the high expression of MIR34A in the cataract lens suppresses the expression of HK1. In vitro, the upregulation of MIR34A together with the downregulation of HK1 inhibits the proliferation, induces the apoptosis of SRA01/04 cells, and accelerates the opacification of mouse lenses via the HK1/caspase 3 signaling pathway. In summary, our study demonstrates that MIR34A modulates lens epithelial cell (LEC) apoptosis and cataract development through the HK1/caspase 3 signaling pathway.
Collapse
Affiliation(s)
- Lujia Feng
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shaowei Bi
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wu Xiang
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| |
Collapse
|
4
|
Yao P, Jiang J, Ma X, Chen Z, Hong Y, Wu Y. miR-23a-3p regulates the proliferation and apoptosis of human lens epithelial cells by targeting Bcl-2 in an in vitro model of cataracts. Exp Ther Med 2021; 21:436. [PMID: 33777189 PMCID: PMC7967796 DOI: 10.3892/etm.2021.9853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 11/06/2022] Open
Abstract
Cataracts account for ~50% of the cases of blindness in individuals worldwide. The apoptosis of lens epithelial cells (LECs) occurs during the formation of cataracts, which is a non-congenital condition. Numerous microRNAs (miRs) have been reported to regulate apoptosis in LECs. For instance, miR-23a expression levels were shown to be upregulated in cataractous lenses; however, the function of miR-23a in cataracts remains undetermined. To establish an in vitro model of cataracts, human LECs, HLE-B3 cells, were induced with 200 µmol/l H2O2 for 24 h. HLE-B3 cells were transfected with the miR-negative control (NC) mimic, miR-23a-3p mimic, miR-NC inhibitor, miR-23a-3p inhibitor, small interfering RNA (siRNA) targeting BCL2 (siRNA-BCL2) and siRNA-NC. The expression levels of miR-23a-3p were detected using reverse transcription-quantitative PCR. The interaction between miR-23a-3p and the 3'-untranslated region (UTR) of the target mRNA BCL2 was predicted by TargetScan 7.1, and further validated using a dual luciferase reporter assay. The BCL2 protein expression levels were analyzed using western blotting, cell proliferation was determined using a CCK-8 assay and the levels of cell apoptosis were analyzed using flow cytometric analysis. The results of the present study revealed that the expression levels of miR-23a-3p were significantly upregulated, while the expression levels of BCL2 were significantly downregulated in H2O2-induced HLE-B3 cells compared to untreated control cells. BCL2 was shown to be a target of miR-23a-3p. The miR-23a-3p inhibitor subsequently attenuated H2O2-induced apoptosis and increased the proliferation of HLE-B3 cells, which was partially reversed by siRNA-BCL2. In conclusion, the findings of the current study suggested that the inhibition of miR-23a-3p may attenuate H2O2-induced cataract formation by targeting BCL2, thus providing a novel therapeutic target for the treatment of patients with cataracts in the clinic.
Collapse
Affiliation(s)
- Pengxiang Yao
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiaoping Ma
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Zhenzhong Chen
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Yufang Hong
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Yang Wu
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
5
|
MicroRNA-15a modulates lens epithelial cells apoptosis and proliferation through targeting B-cell lymphoma-2 and E2F transcription factor 3 in age-related cataracts. Biosci Rep 2020; 39:221172. [PMID: 31737898 PMCID: PMC6900469 DOI: 10.1042/bsr20191773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Age-related cataract remains a serious problem in the aged over the world. MicroRNAs are abnormally expressed in various diseases including age-related cataract. MicroRNA-15a (MicroRNA-15a) has been involved in various diseases and plays crucial roles in many cellular processes. However, the mechanism of microRNA-15a in the genesis of cataract remains barely known. We therefore aimed to investigate the role of microRNA-15a in the cataract. Herein, human lens epithelial B3 cells, HLE-B3 cells were treated with 200 μmol/l H2O2 for 24 h. H2O2 was utilized in our study to induce HLE-B3 cells injury. We observed that cell apoptosis was induced by the treatment of H2O2 and meanwhile, cell proliferation was repressed by 200 μmol/l H2O2. Then, it was found that microRNA-15a was significantly increased with the H2O2 exposure in vitro. Importantly, B-cell lymphoma-2 (BCL2) and E2F transcription factor 3 (E2F3) exert crucial roles in cell apoptosis and cell proliferation. We found that BCL2 and E2F3 were greatly reduced by 200 μmol/l H2O2 in human lens epithelial cells. In addition, microRNA-15a overexpression induced cell apoptosis and repressed cell proliferation through suppressing BCL2 and E2F3. Subsequently, BCL2 and E2F3 were predicted as a direct target of microRNA-15a. The direct correlation between microRNA-15a and BCL2/E2F3 was confirmed by dual luciferase reporter assay. In conclusion, we demonstrated that microRNA-15a triggered apoptosis and repressed the proliferation of HLE-B3 cells by modulating BCL2 and E2F3.
Collapse
|
6
|
Liang S, Dou S, Li W, Huang Y. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging (Albany NY) 2020; 12:17271-17287. [PMID: 32913142 PMCID: PMC7521481 DOI: 10.18632/aging.103683] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Age-related cataract (ARC) is one of the major causes of visual impairment and reversible blindness worldwide. Accumulating evidence has revealed that circular RNAs (circRNAs) are involved in multiple regulatory processes in various ocular diseases. However, the expression profile, regulatory roles, and underlying mechanisms of circRNAs in ARC remain largely unknown. Herein we deep-sequenced circRNAs of anterior lens capsules from normal and ARC lenses, and detected 23,787 candidate circRNAs. Of these, 466 were significantly differentially expressed, and a higher correlation in down-regulated circRNAs between ARC and diabetic cataract was observed compared with up-regulated ones. Subsequent bioinformatics analysis disclosed that certain differentially expressed circRNAs participated in oxidative stress and apoptosis-related signaling pathways in ARC. Notably, the level of circZNF292 was significantly decreased, while miR-23b-3p was significantly increased in ARC. The target region prediction and dual-luciferase reporter assays proved that circZNF292 acted as a competitive endogenous RNA to regulate the expression of anti-oxidative genes through competing with miR-23b-3p. Our results indicate that circZNF292, a down-regulated circRNA in the anterior lens capsule of ARC patients, may be involved in resistance to oxidative damage and apoptosis of lens epithelial cells by sponging miR-23b-3p, providing a potential target for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Shuqi Liang
- Medical College of Qingdao University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Wenfeng Li
- Department of Medical Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yusen Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
7
|
MicroRNA-182-5p protects human lens epithelial cells against oxidative stress-induced apoptosis by inhibiting NOX4 and p38 MAPK signalling. BMC Ophthalmol 2020; 20:233. [PMID: 32552665 PMCID: PMC7301500 DOI: 10.1186/s12886-020-01489-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background MicroRNAs (miRNAs) are abnormally expressed in various ocular diseases, including age-related cataract. However, the role of miR-182-5p in the progression of age-related cataract remains unclear. Methods The expression of miR-182-5p in HLE-B3 cells was detected by qRT-PCR. HLE-B3 cells were transfected with miR-182-5p mimics. CCK-8, EdU, flow cytometry, 2′,7′-dichlorodihydrofluorescein diacetate, JC-1 kit, and western blot were used to assess the cell viability, proliferation, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. The relationship between miR-182-5p and NOX4 was confirmed using the dual-luciferase reporter gene analysis. Results We found that miR-182-5p expression was significantly decreased by the H2O2 exposure. Overexpression of miR-182-5p promoted cell proliferation and inhibited ROS production and apoptosis in H2O2-induced HLE-B3 cells. Moreover, p-p-38, p-ERK, and p-JNK were up-regulated in H2O2-treated HLE-B3 cells, and overexpression of miR-182-5p reversed the effects of H2O2 on HLE-B3 cells. In addition, dual-luciferase reporter assay substantiated that NOX4 was a direct target and downregulated by miR-182-5p. Conclusions We concluded that miR-182-5p inhibited lens epithelial cells apoptosis through regulating NOX4 and p38 MAPK signaling, providing a novel biomarker for treatment of age-related cataract.
Collapse
|
8
|
Qin YE, Tang WF, Xu Y, Wan FR, Chen AH. Ultrasound-Mediated Co-Delivery of miR-34a and sPD-1 Complexed with Microbubbles for Synergistic Cancer Therapy. Cancer Manag Res 2020; 12:2459-2469. [PMID: 32308482 PMCID: PMC7148163 DOI: 10.2147/cmar.s238643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background miR-34a was downregulated and PD-L1 was upregulated in cervical cancer; however, the treatment of cervical cancer lacks precision and targeting. This study explored the ultrasound-mediated co-delivery of miR-34a and sPD-1 complexes with microbubbles for synergistic cancer therapy. Methods Cationic lipid microbubbles (CLMBs) were prepared by membrane hydration and mechanical oscillation. U14 subcutaneous xenograft mice were injected with CLMBs-loaded sPD-1 and miR-34a combined with ultrasound targeted destruction, and tumor volume and tumor weight of mice were measured. TUNEL apoptosis test and the mRNA expression of apoptosis-related gene Bcl-2 and Bax were analyzed by qRT-PCR. Antitumor immune-related cytokines IFN-γ were investigated by qRT-PCR, LDH Cytotoxicity Assay Kit were performed to test cytotoxic T lymphocytes (CTL). Results CLMBs were successfully prepared and the plasmid bound to its surface. The tumor volume and weight were specifically decreased by ultrasound-mediated co-delivery of miR-34a and sPD-1 complexes with microbubbles, apoptosis was induced and the apoptosis suppressor gene Bcl-2 was downregulated and proapoptotic gene Bax were upregulated. qRT-PCR analysis revealed that antitumor immunity-related IFN-γ was strongly upregulated in mice, which were treated with CLMBs-loaded sPD-1 and miR-34a combined with ultrasound targeted destruction, and the percentage of CTL was increased. Conclusion These findings from the study demonstrated that CLMBs could deliver miR-34a and sPD-1, combined with ultrasound targeted destruction, could suppress the tumor tissue growing, induce apoptosis and enhance antitumor immunity in U14 subcutaneous xenograft mice.
Collapse
Affiliation(s)
- Yu-E Qin
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, Hubei, People's Republic of China
| | - Wen-Fan Tang
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, Hubei, People's Republic of China
| | - Yun Xu
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, Hubei, People's Republic of China
| | - Fu-Rong Wan
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, Hubei, People's Republic of China
| | - Ai-Hua Chen
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, Hubei, People's Republic of China
| |
Collapse
|
9
|
Xiu C, Jiang J, Song R. Expression of miR-34a in cataract rats and its related mechanism. Exp Ther Med 2019; 19:1051-1057. [PMID: 32010268 PMCID: PMC6966207 DOI: 10.3892/etm.2019.8295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Expression of miR-34a in cataract rats and its related mechanism were investigated. A total of 30 SD rats were selected and divided into three groups: group A: 2-month-old lucent lens, group B: 18-month-old lucent lens, and group C: 18-month-old naturally occurring cataract lens. The lens was taken and measured by LOC III to determine the degree of lens opacity of the three groups of rats. qPCR was used to detect expression of miR-34a and mRNA of SIRT1 and P53. Western blotting was used to detect the protein expression of SIRT1 and P53. Cell apoptosis was detected by flow cytometry. The lens of rats in group C was more turbid than that of groups A and B (P<0.05). The expression levels of miR-34a and P53 mRNA in the rats lens of group C were significantly higher than those in groups A and B, and the expression of SIRT1 mRNA was significantly lower than that of groups A and group B (P<0.05). Expression of miR-34a in group A was significantly higher than that in group B, the mRNA expression of SIRT1 was significantly lower than that in the lucent lens of 18-month-old rats (P<0.05). The expression of SIRT1 protein in group C was significantly lower than that in groups A and group B, while the expression level of P53 protein in group C was significantly higher than that of groups A and B. The expression of SIRT1 protein in group B was significantly higher than that in group A (P<0.05). The apoptosis rate of group C was higher than that of groups A and group B (P<0.05). In conclusion, the upregulation of expression level of miR-34a is related to cataract occurrence in rats, which may be caused by regulation of SIRT1 protein.
Collapse
Affiliation(s)
- Caimei Xiu
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jing Jiang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ruiying Song
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
10
|
SIRT1 induces resistance to apoptosis in human granulosa cells by activating the ERK pathway and inhibiting NF-κB signaling with anti-inflammatory functions. Apoptosis 2018; 22:1260-1272. [PMID: 28755171 DOI: 10.1007/s10495-017-1386-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIRT1, a member of the sirtuin family, has recently emerged as a vital molecule in controlling ovarian function. The aims of the present study were to investigate SIRT1 expression and analyze SIRT1-mediated apoptosis in human granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemistry for localization of SIRT1 expression. SIRT1 knockdown in a human ovarian GC tumor line (COV434) was achieved by small interfering RNA, and the relationship between apoptosis and SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction and western blotting. We further detected SIRT1 expression in human luteinized GCs. Associations among SIRT1 knockdown, SIRT1 stimulation (resveratrol) and expression of ERK1/2 and apoptotic regulatory proteins were analyzed in cell lines and luteinized GCs. Resveratrol downregulated the levels of nuclear factor (NF)-κB/p65, but this inhibitory effect was attenuated by suppressing SIRT1 activity. The NF-κB/p65 inhibitor pyrrolidine dithiocarbamate achieved similar anti-apoptosis effects. These results suggest that SIRT1 might play an anti-apoptotic role in apoptosis processes in GCs, possibly by sensing and regulating the ERK1/2 pathway, which has important clinical implications. Thus, our study provides a mechanistic link, whereby activation of SIRT1 function might help to sustain human reproduction by maintaining GCs as well as oocytes, offering a novel approach for developing a new class of therapeutic anti-inflammatory agents.
Collapse
|
11
|
A New Long Noncoding RNA ALB Regulates Autophagy by Enhancing the Transformation of LC3BI to LC3BII during Human Lens Development. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:207-217. [PMID: 29246299 PMCID: PMC5650653 DOI: 10.1016/j.omtn.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Autophagy is essential in lens organelle degradation. This study aimed to seek potential autophagy-associated long noncoding RNAs (lncRNAs) and their relative mechanisms in human lens development using the “fried egg” lentoid body (LB) generation system. The expression pattern of LC3B in differentiating LBs was similar to that in developing a mouse lens in vivo. Among the massive lncRNAs expressed with a significant difference between induced pluripotent stem cells (iPSCs) and LBs, lncRNA affecting LC3B (ALB), which was predicted to have a co-relationship with the autophagy marker LC3B, was highly expressed in differentiating lens fibers in LBs. This result was consistent with its high expression in human embryonic lenses compared to those in embryonic stem cells (ESCs). Furthermore, lncRNA ALB knockdown resulted in the downregulation of LC3BII at the protein level, therefore inhibiting the autophagy process in human lens epithelial cells (HLECs). Our results identify lncRNA ALB, a potential autophagy regulator in organelle degradation during human lens development, highlighting the importance of lncRNAs in lens development.
Collapse
|
12
|
Zhang L, Cheng R, Huang Y. MiR-30a inhibits BECN1-mediated autophagy in diabetic cataract. Oncotarget 2017; 8:77360-77368. [PMID: 29100392 PMCID: PMC5652784 DOI: 10.18632/oncotarget.20483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/25/2017] [Indexed: 01/17/2023] Open
Abstract
Purpose To investigate the role of microRNAs in the regulation of autophagy and apoptosis in lens epithelial cells (LECs) during diabetic cataract formation. Methods A miRNA microarray study and quantitative real-time PCR were performed to identify the expression of miRNAs in LECs of diabetic cataract. Human LECs were cultured in high glucose conditions as a diabetic cataract model. BECN1 and LC3B were detected by Western blotting and quantitative real-time PCR. The extent of apoptosis was measured using FACSCalibur flow cytometry. Results Downregulation of miR-30a was identified in LECs attached to diabetic cataract tissues. By the bioinformatic assay and the luciferase activity assay, BECN1 was found to be a direct target of miR-30a. MiR-30a reduced the BECN1-mediated autophagy activity induced by high glucose in LECs in vitro. The ratio of LECs apoptosis was also decreased. Conclusion MiR-30a was involved in the inhibition of autophagy by targeting BECN1 in LECs in human diabetic cataract.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Ophthalmology, School of Medicine, Shandong University, Jinan 250012, China.,Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Rong Cheng
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China.,College of Medicine, Qingdao University, Qingdao 266071, China
| | - Yusen Huang
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
MicroRNA-30a Regulation of Epithelial-Mesenchymal Transition in Diabetic Cataracts Through Targeting SNAI1. Sci Rep 2017; 7:1117. [PMID: 28442786 PMCID: PMC5430627 DOI: 10.1038/s41598-017-01320-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/29/2017] [Indexed: 01/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved and fundamental process in development, fibrosis, and metastasis. During the process, epithelial cells lose their morphology and transcriptional program, and transdifferentiate to mesenchymal cells. It has been reported that lens epithelial cells undergo EMT during cataract formation, and regulation of microRNAs on genes is associated with lens development. However, the molecular mechanisms of this regulation in diabetic cataract still need to be investigated. In the present study, the expression of E-cadherin was downregulated, while the expression of alpha-SMA and vimentin was upregulated in diabetic cataract tissues and the in vitro model, suggesting the involvement of EMT in diabetic cataract formation. Results of miRNA profiling demonstrated that miR-30a was markedly downregulated in diabetic cataract tissues. Overexpression of miR-30a-5p decreased SNAI1, a known modulator of EMT, and the expression of vimentin and alpha-SMA in our diabetic cataract model in vitro. It is concluded that EMT is involved in human diabetic cataract, and upregulation of miR-30a can repress EMT through its targeting of SNAI1 in lens epithelial cells, which make miR-30a a novel target of therapeutic intervention for human diabetic cataract.
Collapse
|