1
|
Bujoreanu Bezman L, Tiutiuca C, Totolici G, Carneciu N, Bujoreanu FC, Ciortea DA, Niculet E, Fulga A, Alexandru AM, Stan DJ, Nechita A. Latest Trends in Retinopathy of Prematurity: Research on Risk Factors, Diagnostic Methods and Therapies. Int J Gen Med 2023; 16:937-949. [PMID: 36942030 PMCID: PMC10024537 DOI: 10.2147/ijgm.s401122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder with an imminent risk of blindness, in cases where early diagnosis and treatment are not performed. The doctors' constant motivation to give these fragile beings a chance at life with optimal visual acuity has never stopped, since Terry first described this condition. Thus, throughout time, several specific advancements have been made in the management of ROP. Apart from the most known risk factors, this narrative review brings to light the latest research about new potential risk factors, such as: proteinuria, insulin-like growth factor 1 (IGF-1) and blood transfusions. Digital imaging has revolutionized the management of retinal pathologies, and it is more and more used in identifying and staging ROP, particularly in the disadvantaged regions by the means of telescreening. Moreover, optical coherence tomography (OCT) and automated diagnostic tools based on deep learning offer new perspectives on the ROP diagnosis. The new therapeutical trend based on the use of anti-VEGF agents is increasingly used in the treatment of ROP patients, and recent research sustains the theory according to which these agents do not interfere with the neurodevelopment of premature babies.
Collapse
Affiliation(s)
- Laura Bujoreanu Bezman
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Carmen Tiutiuca
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Correspondence: Carmen Tiutiuca, Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, 800008, Romania, Tel +40741330788, Email
| | - Geanina Totolici
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Nicoleta Carneciu
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Florin Ciprian Bujoreanu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Florin Ciprian Bujoreanu, Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, 800008, Romania, Tel +40741395844, Email
| | - Diana Andreea Ciortea
- Department of Pediatrics, “Sfantul Ioan” Emergency Clinical Hospital for Children, Galati, Romania
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Ana Fulga
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Anamaria Madalina Alexandru
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Department of Neonatology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
| | - Daniela Jicman Stan
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Aurel Nechita
- Department of Pediatrics, “Sfantul Ioan” Emergency Clinical Hospital for Children, Galati, Romania
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| |
Collapse
|
2
|
Aydoğan S, Dilli D, Kabataş EU, Akduman H, Şah Ipek M, Oğuz B, Ataş N, Zenciroğlu A. The Serum Levels of Asymmetric Dimethylarginine, Vascular Endothelial Growth Factor, and Insulin-Like Growth Factor-1 in Preterms with Retinopathy of Prematurity. Fetal Pediatr Pathol 2022; 41:634-639. [PMID: 34289792 DOI: 10.1080/15513815.2021.1948644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective:To determine the serum levels of asymmetric dimethylarginine (ADMA), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) in preterms with retinopathy of prematurity (ROP). Materials and Methods: We included 37 preterm infants. The first blood samples were obtained within the first 5 days of life and repeated at the time of the first ophthalmologic examination for ROP. The levels of ADMA, IGF-1, and VEGF were measured in all samples. Results: ROP was detected in 12 of the subjects (32.4%). We categorized the subjects as non-ROP (Group 1; n = 25), untreated ROP (Group 2; n = 7), and treated ROP (Group 3; n = 5) according to the eye findings. There were no significant differences among the groups for serum levels of ADMA, VEGF, and IGF-1 at the first sampling. Conclusion: We did not find any differences in terms of serum ADMA, IGF-1, and VEGF levels in preterm infants with or without ROP.
Collapse
Affiliation(s)
- Seda Aydoğan
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Dilek Dilli
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Emrah Utku Kabataş
- Department of Ophtalmology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Mehmet Şah Ipek
- Department of Neonatology, Memorial Dicle Hospital, Diyarbakır, Turkey
| | - Baran Oğuz
- Department of Neonatology, Şanlıurfa Research and Training Hospital, Şanlıurfa, Turkey
| | - Nurgül Ataş
- Department of Neonatology, Şanlıurfa Research and Training Hospital, Şanlıurfa, Turkey
| | - Ayşegül Zenciroğlu
- Department of Neonatology, University of Health Sciences of Turkey, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Risk Factors Associated with Retinopathy of Prematurity in Very and Extremely Preterm Infants. ACTA ACUST UNITED AC 2021; 57:medicina57050420. [PMID: 33925286 PMCID: PMC8146817 DOI: 10.3390/medicina57050420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/04/2022]
Abstract
Background and Objectives: Retinopathy of prematurity (ROP) is the leading cause of blindness in preterm infants. We studied the relationship between different perinatal characteristics, i.e., sex; gestational age (GA); birth weight (BW); C-reactive protein (CRP) and lactate dehydrogenase (LDH) concentrations; ventilation, continuous positive airway pressure (CPAP), and surfactant administration; and the incidence of Stage 1–3 ROP. Materials and Methods: This study included 247 preterm infants with gestational age (GA) < 32 weeks that were successfully screened for ROP. Univariate and multivariate binary analyses were performed to find the most significant risk factors for ROP (Stage 1–3), while multivariate multinomial analysis was used to find the most significant risk factors for specific ROP stages, i.e., Stage 1, 2, and 3. Results: The incidence of ROP (Stage 1–3) was 66.40% (164 infants), while that of Stage 1, 2, and 3 ROP was 15.38% (38 infants), 27.53% (68 infants), and 23.48% (58 infants), respectively. Following univariate analysis, multiple perinatal characteristics, i.e., GA; BW; and ventilation, CPAP, and surfactant administration, were found to be statistically significant risk factors for ROP (p < 0.001). However, in a multivariate model using the same characteristics, only BW and ventilation were significant ROP predictors (p < 0.001 and p < 0.05, respectively). Multivariate multinomial analysis revealed that BW was only significantly correlated with Stage 2 and 3 ROP (p < 0.05 and p < 0.001, respectively), while ventilation was only significantly correlated with Stage 2 ROP (p < 0.05). Conclusions: The results indicate that GA; BW; and the use of ventilation, CPAP, and surfactant were all significant risk factors for ROP (Stage 1–3), but only BW and ventilation were significantly correlated with ROP and specific stages of the disease, namely Stage 2 and 3 ROP and Stage 2 ROP, respectively, in multivariate models.
Collapse
|
4
|
The uPAR System as a Potential Therapeutic Target in the Diseased Eye. Cells 2019; 8:cells8080925. [PMID: 31426601 PMCID: PMC6721659 DOI: 10.3390/cells8080925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of vascular networks is characteristic of eye diseases associated with retinal cell degeneration and visual loss. Visual impairment is also the consequence of photoreceptor degeneration in inherited eye diseases with a major inflammatory component, but without angiogenic profile. Among the pathways with high impact on vascular/degenerative diseases of the eye, a central role is played by a system formed by the ligand urokinase-type plasminogen activator (uPA) and its receptor uPAR. The uPAR system, although extensively investigated in tumors, still remains a key issue in vascular diseases of the eye and even less studied in inherited retinal pathologies such as retinitis pigmantosa (RP). Its spectrum of action has been extended far beyond a classical pro-angiogenic function and has emerged as a central actor in inflammation. Preclinical studies in more prevalent eye diseases characterized by neovascular formation, as in retinopathy of prematurity, wet macular degeneration and rubeosis iridis or vasopermeability excess as in diabetic retinopathy, suggest a critical role of increased uPAR signaling indicating the potentiality of its modulation to counteract neovessel formation and microvascular dysfunction. The additional observation that the uPAR system plays a major role in RP by limiting the inflammatory cascade triggered by rod degeneration rises further questions about its role in the diseased eye.
Collapse
|