Abstract
Filtration surgery has, for the past 50 years been key in the treatment of glaucoma yet a significant issue in the long-term success of such surgery is fibrosis limiting aqueous drainage. Numerous methods have been used to reduce such scarring after filtration surgery and animal models have been important in the development of such techniques. First animal models have been central in understanding molecular and cellular changes occurring in fibrosis and thus which pathways might be valuable therapeutic. Secondly animal models have been critical in determining which of these therapies is likely to be most worthwhile. Having said that animals differ substantially from humans in the anatomy of their aqueous drainage pathways and in the mechanisms of fibrotic change. Rodents and lagomorphs vary more markedly from humans than do primates at an anatomic, biochemical and physiological level, and thus the latter might seem more appropriate as models for antifibrotic techniques. However the welfare implications, and thus ethical issues, in using primates are more concerning than with rodents or rabbits and efforts to refine, reduce and replace living animals in such model systems are crucially important. One problem is that the animal models normally involve healthy eyes, not ones with glaucoma. In veterinary ophthalmology we see large numbers of dogs with glaucoma, many of which have filtration implants placed. Potentially these could be a valuable animal model where benefits of antifibrotic treatment could benefit the animals involved and the research seeking to optimise such treatments.
Collapse