1
|
Zhu Y, Li T, Zhou S, Wang G, Zhang H, Yin Y, Wang T, Chen X. Survivin inhibition attenuates EGF-induced epithelial mesenchymal transformation of human RPE cells via the EGFR/MAPK pathway. PLoS One 2024; 19:e0309539. [PMID: 39213375 PMCID: PMC11364297 DOI: 10.1371/journal.pone.0309539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The abnormal growth factors-induced epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells was known as a vital pathogenesis of proliferative vitreoretinopathy (PVR). This study aims to explore how survivin inhibition affects EMT induced by epidermal growth factor (EGF) in RPE cells. METHODS Human primary RPE cells were identified in vitro. EMT in RPE cells was induced by EGF. Inhibition of survivin in RPE cells was accomplished through the use of a survivin inhibitor (YM155) and survivin siRNA. The viability, proliferation and migration of RPE cells was detected by methylthiazol tetrazolium assay, bromodeoxyuridine labeling assay, and wound healing assay, respectively. The EGF receptor /mitogen-activated protein kinase (EGFR/MAPK) proteins and EMT-related proteins were measured by western blot and immunofluorescence assay. RESULTS EGF induced significant EMT in RPE cells, activated the phosphorylation of EGFR/MAPK signaling proteins, and caused changes to EMT-related proteins. YM155 suppressed RPE cells' viability, proliferation, and migration; induced the phosphorylation of EGFR, JNK, and P38MAPK; and down regulated EGFR and phosphorylated ERK. YM155 also increased expression of E-cadherin and ZO-1 proteins and reduced expression of N-cadherin, Vimentin, and α-SMA proteins. The EGF-induced increase of RPE cell proliferation and migration was constrained by survivin inhibition. Moreover, survivin inhibition in RPE cells suppressed the EGF-caused phosphorylation of EGFR/MAPK proteins and attenuated the EGF-induced reduction of E-cadherin and ZO-1 proteins and increase of N-cadherin, Vimentin, and α-SMA proteins. CONCLUSIONS Survivin inhibition attenuates EGF-induced EMT of RPE cells by affecting the EGFR/MAPK signaling pathway. Survivin might be a promising target for preventing PVR.
Collapse
Affiliation(s)
- Yusheng Zhu
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Teng Li
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Sirui Zhou
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Guowei Wang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Huihui Zhang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Yong Yin
- Xi’ an Eye Bank, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Xiaodong Chen
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Zhu YS, Zhou SR, Zhang HH, Wang T, Chen XD. Inhibition of EGFR attenuates EGF-induced activation of retinal pigment epithelium cell via EGFR/AKT signaling pathway. Int J Ophthalmol 2024; 17:1018-1027. [PMID: 38895677 PMCID: PMC11144774 DOI: 10.18240/ijo.2024.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
AIM To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).
Collapse
Affiliation(s)
- Yu-Sheng Zhu
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Si-Rui Zhou
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Hui-Hui Zhang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Chen
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
3
|
Chen X, Tzekov R, Su M, Zhu Y, Han A, Li W. Hydrogen peroxide-induced oxidative damage and protective role of peroxiredoxin 6 protein via EGFR/ERK signaling pathway in RPE cells. Front Aging Neurosci 2023; 15:1169211. [PMID: 37529008 PMCID: PMC10388243 DOI: 10.3389/fnagi.2023.1169211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
- Xiamen Eye Center of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, United States
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yusheng Zhu
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Wensheng Li
- Shanghai Aier Eye Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Bonente D, Bianchi L, De Salvo R, Nicoletti C, De Benedetto E, Bacci T, Bini L, Inzalaco G, Franci L, Chiariello M, Tosi GM, Bertelli E, Barone V. Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes. Int J Mol Sci 2023; 24:ijms24119728. [PMID: 37298679 DOI: 10.3390/ijms24119728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial-mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therapy.
Collapse
Affiliation(s)
- Denise Bonente
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Laura Bianchi
- Section of Functional Proteomics, Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Rossana De Salvo
- Section of Functional Proteomics, Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Claudio Nicoletti
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Luca Bini
- Section of Functional Proteomics, Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giovanni Inzalaco
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100 Siena, Italy
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina 1, 53100 Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Lorenzo Franci
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100 Siena, Italy
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina 1, 53100 Siena, Italy
| | - Mario Chiariello
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100 Siena, Italy
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina 1, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
5
|
Wang W, Han Q, Xu X, Wen C. miR-146 Relieves Acute Asthma via Decreasing Epidermal Growth Factor Receptor/Toll-Like Receptor 4 (EGFR/TLR4) and Enhancing Autophagy. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is a close relationship between acute asthma and autophagy. In addition, some studies claim that miR-146 can regulate autophagy and participate in acute asthma. This study further explores the role of miR-146 in acute asthma and underlying mechanism. Twenty BALB/c mice were selected
and randomly divided into two groups, the model group and the control group, each with 10 mice. Lung tissues, peripheral blood, alveolar lavage fluid, and primary lymphocytes were separated into miR-146 over expression group (miR-146 mimic), miR-146 low expression group (miR-146 inhibitor),
negative control group (NC), blank group, or SBI-0206965 group. Acute asthma was established and the expression levels of miR-146, EGFR, TLR4, LC3, beclin1, and ATG5 in each group was measured. The targeting relationship and correlation between miR-146 and EGFR were also investigated. The
expression of IL-4 in model group was increased compared to control arm while the expression of IFN-γ was opposite (P < 0.05). The expressions of miR-146, LC3, beclin1, and the expression of ATG5 were decreased (P < 0.05). The expressions of miR-146 gene and
LC3, beclin1, ATG5 mRNA and protein in the miR-146 mimic group were the highest, while the expressions of EGFR and TLR4 were the lowest. The SBI-0206965 group and the miR-146 inhibitor group are opposite to the miR-146 mimic group, the SBI-0206965 group and the miR-146 inhibitor group have
significant differences (P < 0.05). miR-146 has a directly targeted EGFR and TLR4, and both showed a negative correlation (rEGFR=−0.397, P = 0.013; rTLR4=−0.402, P = 0.021). During the onset of asthma, miR-146 was abnormally decreased. miR-146 directly targets
and negatively regulates EGFR. In addition, miR-146 down-regulates TLR4 gene to increase CD4+ lymphocytes’ aphagocytosis-related markers (LC3, beclin1, ATG5) which further promotes the autophagy process and ultimately alleviates the degree of acute asthma. Its main mechanism is related
to the down-regulation of the EGFR/TLR4 through regulated the expression of autophagy. Our study provided a scientific reference for further understanding of acute pathogenesis of asthma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, 163000, China
| | - Qiuguo Han
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, 163000, China
| | - Xin Xu
- Department of Vascular Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, 163000, China
| | - Chen Wen
- Department of Pharmaceutical Laboratory Science, Daqing Medical College, Daqing, Heilongjiang, 163000, China
| |
Collapse
|
6
|
Bianchi L, Altera A, Barone V, Bonente D, Bacci T, De Benedetto E, Bini L, Tosi GM, Galvagni F, Bertelli E. Untangling the Extracellular Matrix of Idiopathic Epiretinal Membrane: A Path Winding among Structure, Interactomics and Translational Medicine. Cells 2022; 11:cells11162531. [PMID: 36010606 PMCID: PMC9406781 DOI: 10.3390/cells11162531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell–matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin β1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein–protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.
Collapse
Affiliation(s)
- Laura Bianchi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Altera
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
7
|
Shahlaee A, Woeller CF, Philp NJ, Kuriyan AE. Translational and clinical advancements in management of proliferative vitreoretinopathy. Curr Opin Ophthalmol 2022; 33:219-227. [PMID: 35220328 DOI: 10.1097/icu.0000000000000840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Despite advancement in the surgical instrumentation and techniques, proliferative vitreoretinopathy (PVR) remains the most common cause for failure of rhegmatogenous retinal detachment (RRD) repair. This review discusses ongoing translational and clinical advancements in PVR. RECENT FINDINGS PVR represents an exaggerated and protracted scarring process that can occur after RRD. The primary cell types involved are retinal pigment epithelium, glial, and inflammatory cells. They interact with growth factors and cytokines derived from the breakdown of the blood-retinal barrier that trigger a cascade of cellular processes, such as epithelial-mesenchymal transition, cell migration, chemotaxis, proliferation, elaboration of basement membrane and collagen and cellular contraction, leading to overt retinal pathology. Although there are currently no medical therapies proven to be effective against PVR in humans, increased understanding of the risks factors and pathophysiology have helped guide investigations for molecular targets of PVR. The leading therapeutic candidates are drugs that mitigate growth factors, inflammation, and proliferation are the leading therapeutic candidates. SUMMARY Although multiple molecular targets have been investigated to prevent and treat PVR, none have yet demonstrated substantial evidence of clinical benefit in humans though some show promise. Advancements in our understanding of the pathophysiology of PVR may help develop a multipronged approach for this condition.
Collapse
Affiliation(s)
- Abtin Shahlaee
- Mid Atlantic Retina, Retina Service of Wills Eye Hospital
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Nancy J Philp
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ajay E Kuriyan
- Mid Atlantic Retina, Retina Service of Wills Eye Hospital
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Yuan XW, Shen LL, Huang WH, Zhao HJ. Dehydroabietic acid chemosensitizes drug-resistant acute lymphoblastic leukemia cells by downregulating survivin expression. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.354429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|