1
|
Li J, Hu YQ, Cheng HB, Wang T, Kuang LH, Huang T, Yan XH. RDH12-associated retinal degeneration caused by a homozygous pathogenic variant of 146C>T and literature review. Int J Ophthalmol 2024; 17:311-316. [PMID: 38371258 PMCID: PMC10827614 DOI: 10.18240/ijo.2024.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024] Open
Abstract
AIM To describe the clinical, electrophysiological, and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant. METHODS The patient underwent a complete ophthalmologic examination including best-corrected visual acuity, anterior segment and dilated fundus, visual field, spectral-domain optical coherence tomography (OCT) and electroretinogram (ERG). The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result. Then we reviewed the characteristics of the patients reported with the same variant. RESULTS A 30-year male presented with severe early retinal degeneration who complained night blindness, decreased visual acuity, vitreous floaters and amaurosis fugax. The best corrected vision was 0.04 OD and 0.12 OS, respectively. The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye. Autofluorescence shows bilateral symmetrical hypo-autofluorescence. ERG revealed that the amplitudes of a- and b-wave were severely decreased. Multifocal ERG showed decreased amplitudes in the local macular area. A homozygous missense variant c.146C>T (chr14:68191267) was found. The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied. CONCLUSION An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported. The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.
Collapse
Affiliation(s)
- Jin Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Yi-Qun Hu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Hong-Bo Cheng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Ting Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Long-Hao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Xiao-He Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| |
Collapse
|
2
|
Wang YC, Wang L, Shao YQ, Weng SJ, Yang XL, Zhong YM. Exendin-4 promotes retinal ganglion cell survival and function by inhibiting calcium channels in experimental diabetes. iScience 2023; 26:107680. [PMID: 37680468 PMCID: PMC10481356 DOI: 10.1016/j.isci.2023.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Progressive damage of retinal ganglion cells (RGCs) is observed in early diabetic retinopathy. Intracellular Ca2+ overload mediated by Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is involved in neurodegeneration, whereas glucagon-like peptide-1 (GLP-1) provides neuroprotection. However, whether GLP-1 plays a neuroprotective role in diabetic retinas by modulating VGCCs remains unknown. We found that eye drops of exendin-4, a long-acting GLP-1 receptor (GLP-1R) agonist, prevented the increase of L-type Ca2+ current (ILCa) densities of RGCs induced by 4-week hyperglycemia and promoted RGC survival by suppressing L-type VGCC (L-VGCC) activity in streptozotocin-induced diabetic rats. Moreover, exendin-4-induced suppression of ILCa in RGCs may be mediated by a GLP-1R/Gs/cAMP-PKA/ryanodine/Ca2+/calmodulin/calcineurin/PP1 signaling pathway. Furthermore, exendin-4 functionally improved the light-evoked spiking ability of diabetic RGCs. These results suggest that GLP-1R activation enhances cAMP to PP1 signaling and that PP1 inactivates L-VGCCs by dephosphorylating them, thereby reducing Ca2+ influx, which could protect RGCs against excitotoxic Ca2+ overload.
Collapse
Affiliation(s)
- Yong-Chen Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
3
|
Li L, Li J, Guan H, Oishi H, Takahashi S, Zhang C. Human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications: applications and research advances. Int J Med Sci 2023; 20:1492-1507. [PMID: 37790847 PMCID: PMC10542192 DOI: 10.7150/ijms.87472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetes mellitus and its complications pose a major threat to global health and affect the quality of life and life expectancy of patients. Currently, the application of traditional therapeutic drugs for diabetes mellitus has great limitations and can only temporarily control blood glucose but not fundamentally cure it. Mesenchymal stem cells, as pluripotent stromal cells, have multidirectional differentiation potential, high self-renewal, immune regulation, and low immunogenicity, which provide a new idea and possible development direction for diabetes mellitus treatment. Regenerative medicine with mesenchymal stem cells treatment as the core treatment will become another treatment option for diabetes mellitus after traditional treatment. Recently, human umbilical cord mesenchymal stem cells have been widely used in basic and clinical research on diabetes mellitus and its complications because of their abundance, low ethical controversy, low risk of infection, and high proliferation and differentiation ability. This paper reviews the therapeutic role and mechanism of human umbilical cord mesenchymal stem cells in diabetes mellitus and its complications and highlights the challenges faced by the clinical application of human umbilical cord mesenchymal stem cells to provide a more theoretical basis for the application of human umbilical cord mesenchymal stem cells in diabetes mellitus patients.
Collapse
Affiliation(s)
- Luyao Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Jicui Li
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Haifei Guan
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate 24 School of Medical Sciences, Aichi 467-8601, Nagoya, Japan
| | - Satoru Takahashi
- Institute of Basic Medical Sciences and Laboratory Animal Resource Center, University of Tsukuba, Ibaraki 305-8575, Tsukuba, Japan
| | - Chuan Zhang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| |
Collapse
|
4
|
Deng H, Ai M, Cao Y, Cai L, Guo X, Yang X, Yi G, Fu M. Potential Protective Function of Adiponectin in Diabetic Retinopathy. Ophthalmol Ther 2023; 12:1519-1534. [PMID: 37000404 PMCID: PMC10164206 DOI: 10.1007/s40123-023-00702-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Adiponectin, one of the most ubiquitous adipokines found in the blood, plays a major role in glucolipid metabolism and energy metabolism and regulation. In recent years, a growing body of research indicates that adiponectin also plays a significant role in diabetic retinopathy. In the present review, we specifically address the protective effects of adiponectin on the development and progression of diabetic retinopathy through improvement in insulin resistance, alleviation of oxidative stress, limiting of inflammation, and prevention of vascular remodeling, with the aim to explore new potential approaches and targets for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Deng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Meichen Ai
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yuchen Cao
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Liyang Cai
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xi Guo
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiongyi Yang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26, Erheng Road, Yuancun, Tianhe, Guangzhou, 510230, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China.
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|