1
|
Rzeszotek S, Trybek G, Tarnowski M, Serwin K, Jaroń A, Schneider G, Kolasa A, Wiszniewska B. Colostrum-Induced Temporary Changes in the Expression of Proteins Regulating the Epithelial Barrier Function in the Intestine. Foods 2022; 11:foods11050685. [PMID: 35267318 PMCID: PMC8909690 DOI: 10.3390/foods11050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal wall and epithelial cells are interconnected by numerous intercellular junctions. Colostrum (Col), in its natural form, is a secretion of the mammary gland of mammals at the end of pregnancy and up to 72 h after birth. Recently, it has been used as a biologically active dietary supplement with a high content of lactoferrin (Lf). Lf, a glycoprotein with a broad spectrum of activity, is becoming more popular in health-promoting supplements. This study aims to investigate whether Col supplementation can affect small and large intestine morphology by modulating the expression of selected proteins involved in tissue integrity. We examined the thickness of the epithelium, and the length of the microvilli, and assessed the expression of CDH1, CDH2, CTNNB, CX43, VCL, OCLN, HP, MYH9, and ACTG2 gene levels using qRT-PCR and at the protein level using IHC. Additionally, to evaluate whether the effect of Col supplementation is temporary or persistent, we performed all analyses on tissues collected from animals receiving Col for 1, 3, or 6 months. We noticed a decrease in CDH1 and CDH2 expression, especially after 3 months of supplementation in the large intestine and in CTNNB in the small intestine as well as increased levels of CX43 and CTNNB1 in the small intestine. The present data indicate that Col can temporarily alter some components of the cell adhesion molecules involved in the formation of the cellular barrier.
Collapse
Affiliation(s)
- Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
- Correspondence: ; Tel.: +48-663-861-490
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Karol Serwin
- Department of Infectious Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Arkońska 4, 71-455 Szczecin, Poland;
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Gabriela Schneider
- UofL Health-Brown Cancer Center and Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| |
Collapse
|
2
|
Bioactive potential of yak's milk and its products; pathophysiological and molecular role as an immune booster in antibiotic resistance. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|