1
|
Khanchandani P, Narayanan A, Naik AA, Kannan V, Pradhan SS, Srimadh Bhagavatham SK, Pulukool SK, Sivaramakrishnan V. Clinical Characteristics, Current Treatment Options, Potential Mechanisms, Biomarkers, and Therapeutic Targets in Avascular Necrosis of Femoral Head. Med Princ Pract 2024:1-18. [PMID: 39168116 DOI: 10.1159/000541044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Avascular necrosis of femoral head (AVNFH) is a debilitating disease of the young, affecting the quality of life significantly and eventually leading to total hip replacement surgery. The disease is diagnosed clinico-radiologically and MRI is the investigation of choice to diagnose the early stages of the disease. There is neither an early biomarker for detection nor is there a permanent cure for the disease and most of the patients are managed with various combinations of surgical and medical management protocols. In this review, we comprehensively address the etiopathogenesis, clinical characteristics, therapeutic procedures, bone characteristics, histopathology, multi-omic studies, finite element modeling, and systems analysis that has been performed in AVNFH. The etiology includes various factors that compromise the blood supply to the femoral head which also includes contributions by environmental and genetic factors. Multi-omic analysis has shown an association of deregulated pathways with the disease. The cell types involved include mesenchymal stem cells, osteoblasts, osteoclasts, endothelial and immune cells. Biochemical, hematological, histopathology, IHC, and other bone remodeling and degradation marker studies have been performed. A systems analysis using multi-omic data sets from published literature was carried out, the relevance of which is discussed to delineate potential mechanisms in etiopathogenesis, diagnosis, and effective management of this debilitating disease.
Collapse
Affiliation(s)
- Prakash Khanchandani
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | - Aswath Narayanan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Ashwin A Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Vishnu Kannan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | | | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthigram, India
| |
Collapse
|
2
|
Ghaithi AKA, Al Maskari SM, Al Mutani MM, Bimani AMA, Al Jabri Z, Badi KSA, Husband J. Specific discrimination of pathogenic bacteria causing septic arthritis using Raman spectroscopy: In-vitro study. Diagn Microbiol Infect Dis 2024; 109:116339. [PMID: 38735148 DOI: 10.1016/j.diagmicrobio.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
In this study we performed preliminary experiments using Raman spectroscopy as an evolving technology in biofluid and microbial characterization, to explore its potential for rapid diagnosis of pathogenic bacteria in an in-vitro synovial fluid infection model. Normal human synovial fluids samples were collected from patients undergoing knee surgery and the three most common pathogenic bacteria introduced in-vitro into the samples. The bacterial growth was systematically monitored using a Raman spectroscopy. Multivariate regression analysis of acquired spectra showed bacterial characteristic Raman bands related to bacterial cell membranes and DNA structures to increase continuously as the incubation period was increased. Spectra signature recorded from cultured synovial fluid samples showed a significant loss in synovial quality and protein morphology over time compared to control samples. In this study, Raman spectroscopy shows promise for rapid pathogenic bacteria identification in synovial fluid. Marker peaks distinguished inoculated bacteria, while chemical changes reveal infection dynamics.
Collapse
Affiliation(s)
- Ahmed K Al Ghaithi
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman.
| | - Sultan M Al Maskari
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman
| | - Mohammad M Al Mutani
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman
| | - Atika M Al Bimani
- Department of Microbiology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Zaaima Al Jabri
- Department of Microbiology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Khoula S Al Badi
- Department of Surgery, Division of Orthopedic, Sultan Qaboos University, Muscat, Oman
| | - John Husband
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
3
|
Ramser A, Greene ES, Wideman R, Dridi S. Potential non-invasive detection of lesions in broiler femur heads: application of the DXA imaging system. Front Physiol 2024; 15:1363992. [PMID: 38827990 PMCID: PMC11140573 DOI: 10.3389/fphys.2024.1363992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Leg health is a significant economic and welfare concern for the poultry industry. Current methods of detection rely on visual assessment of the legs and gait scores and bone scoring during necropsy for full characterization. Additionally, the current scoring of femurs only examines the external surface of the femoral head. Through the use of the dual-energy X-ray absorptiometry (DXA) imaging system, we show the presence of a necrotic region in the femurs that would otherwise be considered healthy based on the current evaluation procedures. Importantly, these lesions were present in almost 60% (22 of 37) of femurs that scored normal for femoral head necrosis (FHN). Additionally, these femurs showed greater bone mineral content (BMC) relative to weight compared to their counterparts with no lucent lesions (6.95% ± 0.20% vs. 6.26% ± 0.25; p = 0.038). Identification of these lesions presents both a challenge and an opportunity. These subclinical lesions are likely to be missed in routine scoring procedures for FHN and can inadvertently impact the characterization of the disease and genetic selection programs. Furthermore, this imaging system can be used for in vivo, ex vivo, and embryonic (egg) studies and, therefore, constitutes a potential non-invasive method for early detection of bone lesions in chickens and other avian species.
Collapse
Affiliation(s)
| | | | | | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR, United States
| |
Collapse
|
4
|
Matthies L, Gebrekidan MT, Braeuer AS, Friedrich RE, Stelzle F, Schmidt C, Smeets R, Assaf AT, Gosau M, Rolvien T, Knipfer C. Raman spectroscopy and U-Net deep neural network in antiresorptive drug-related osteonecrosis of the jaw. Oral Dis 2024; 30:2439-2452. [PMID: 37650266 DOI: 10.1111/odi.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Application of an optical method for the identification of antiresorptive drug-related osteonecrosis of the jaw (ARONJ). METHODS We introduce shifted-excitation Raman difference spectroscopy followed by U-Net deep neural network refinement to determine bone tissue viability. The obtained results are validated through established histological methods. RESULTS Discrimination of osteonecrosis from physiological tissues was evaluated at 119 distinct measurement loci in 40 surgical specimens from 28 patients. Mean Raman spectra were refined from 11,900 raw spectra, and characteristic peaks were assigned to their respective molecular origin. Then, following principal component and linear discriminant analyses, osteonecrotic lesions were distinguished from physiological tissue entities, such as viable bone, with a sensitivity, specificity, and overall accuracy of 100%. Moreover, bone mineral content, quality, maturity, and crystallinity were quantified, revealing an increased mineral-to-matrix ratio and decreased carbonate-to-phosphate ratio in ARONJ lesions compared to physiological bone. CONCLUSION The results demonstrate feasibility with high classification accuracy in this collective. The differentiation was determined by the spectral features of the organic and mineral composition of bone. This merely optical, noninvasive technique is a promising candidate to ameliorate both the diagnosis and treatment of ARONJ in the future.
Collapse
Affiliation(s)
- Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Medhanie T Gebrekidan
- Institute of Thermal-, Environmental- and Resources' Process Engineering (ITUN), Technische Universität Bergakademie Freiberg (TUBAF), Freiberg, Germany
| | - Andreas S Braeuer
- Institute of Thermal-, Environmental- and Resources' Process Engineering (ITUN), Technische Universität Bergakademie Freiberg (TUBAF), Freiberg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Stelzle
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Constantin Schmidt
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of "Regenerative Orofacial Medicine", Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandre T Assaf
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Hashmi AZA, Fazari EA, Ward MA, Masruri RA, Balushi SA, Mutani MA, Ghaithi AA, Baluki WA. Predictors of Developing a Complex Course of Osteomyelitis in Patients with Sickle Cell Anaemia. Sultan Qaboos Univ Med J 2024; 24:58-62. [PMID: 38434462 PMCID: PMC10906751 DOI: 10.18295/squmj.12.2023.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 03/05/2024] Open
Abstract
Objectives Despite the numerous advances in management strategies, treating osteomyelitis in individuals with sickle cell disease (SCD) remains a significant challenge, leading to severe long-term consequences. This study aimed to assess the key factors potentially linked to a complex progression of osteomyelitis in patients diagnosed with SCD. Methods A cohort of 34 patients was identified and their progress was monitored over a span of 12 months during a 10-year period (2010-2020). The variables under investigation encompassed demographic and clinical traits, laboratory analyses and imaging data, as well as the treatment strategies employed. Results The risk prediction model pinpointed 5 factors (severity of SCD, involvement of lower limbs, presence of bacteraemia, magnetic resonance image [MRI] findings and utilisation of surgical debridement) that exhibited an area under the curve (AUC) exceeding 0.7. Causative organisms were identified in 9 out of the total 34 patients (26.47%). A total of 17 patients displayed a severe course of SCD (AUC = 7.88), with MRI being highlighted as a valuable contributing factor (AUC = 7.88). Furthermore, 13 patients (38.2%) underwent surgical debridement, a procedure that yielded a statistically significant P value of 0.012 and an AUC of 0.714. Conclusion Osteomyelitis within the context of severe SCD, particularly when accompanied by lower extremity infection, bacteraemia, positive MRI findings and the need for surgical debridement, emerges as a cluster of risk factors predisposing individuals to osteomyelitis relapse and a more complex disease course.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wafa Al Baluki
- Department of Surgery, Sultan Qaboos University Hospital
| |
Collapse
|
6
|
Al-Otaibi ML. An overview of pathophysiology and treatment options of osteonecrosis of femoral head in sickle cell disease. Saudi Med J 2022; 43:1192-1199. [PMID: 36379523 PMCID: PMC10043914 DOI: 10.15537/smj.2022.43.11.20220429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is the most prevalent musculoskeletal pathologic manifestation of sickle cell disease (SCD) resulting in an osteonecrotic event. This review aimed to summarize mechanisms involved in pathophysiology of ONFH and treatment options available in Saudi Arabia to treat SCD patients with complication of osteonecrotic event. The pathophysiology of ONFH include genetic and micro particles involvement. The progression of osteonecrosis involves reduced levels of bioactive compounds in peripheral blood mononuclear cells and elevated CD4+T circulating levels to stimulate pro-inflammatory cytokines contributing to inflammation at target site. Initial treatment approach is pharmacological agents use to mitigate risk. Further, bone morphogenetic protein stimulation initiate bone formation and treatment can be improved with the use of bone morphogenetic protein, total hip arthroplasty and cell therapies. This review provides baseline information for future studies to be carried out in Saudi Arabia to improve treatment options in SCD patients with ONFH.
Collapse
Affiliation(s)
- Mohammed L. Al-Otaibi
- From theDepartment of Orthopedic Surgery, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.
| |
Collapse
|