1
|
Huang F, Huang Q, Liao X, Gao Y. Prediction of high-risk prostate cancer based on the habitat features of biparametric magnetic resonance and the omics features of contrast-enhanced ultrasound. Heliyon 2024; 10:e37955. [PMID: 39323806 PMCID: PMC11423289 DOI: 10.1016/j.heliyon.2024.e37955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Rationale and objectives To predict high-risk prostate cancer (PCa) by combining the habitat features of biparametric magnetic resonance imaging (bp-MRI) with the omics features of contrast-enhanced ultrasound (CEUS). Materials and methods This study retrospectively collected patients with PCa confirmed by histopathology from January 2020 to June 2023. All patients underwent bp-MRI and CEUS of the prostate, followed by a targeted and transrectal systematic prostate biopsy. The cases were divided into the intermediate-low-risk group (Gleason score ≤7, n = 59) and high-risk group (Gleason score ≥8, n = 33). Radiomics prediction models, namely, MRI_habitat, CEUS_intra, and MRI-CEUS models, were developed based on the habitat features of bp-MRI, the omics features of CEUS, and a merge of features of the two, respectively. Predicted probabilities, called radscores, were then obtained. Clinical-radiological indicators were screened to construct clinic models, which generated clinic scores. The omics-clinic model was constructed by combining the radscore of MRI-CEUS and the clinic score. The predictive performance of all the models was evaluated using the receiver operating characteristic curve. Results The area under the curve (AUC) values of the MRI-CEUS model were 0.875 and 0.842 in the training set and test set, respectively, which were higher than those of the MR_habitat (training set: 0.846, test set: 0.813), CEUS_intra (training set: 0.801, test set: 0.743), and clinic models (training set: 0.722, test set: 0.611). The omics-clinic model achieved a higher AUC (train set: 0.986, test set: 0.898). Conclusions The combination of the habitat features of bp-MRI and the omics features of CEUS can help predict high-risk PCa.
Collapse
Affiliation(s)
- Fangyi Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Qun Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Xinhong Liao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China
| |
Collapse
|
2
|
Mendes B, Domingues I, Santos J. Radiomic Pipelines for Prostate Cancer in External Beam Radiation Therapy: A Review of Methods and Future Directions. J Clin Med 2024; 13:3907. [PMID: 38999473 PMCID: PMC11242211 DOI: 10.3390/jcm13133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Prostate Cancer (PCa) is asymptomatic at an early stage and often painless, requiring only active surveillance. External Beam Radiotherapy (EBRT) is currently a curative option for localised and locally advanced diseases and a palliative option for metastatic low-volume disease. Although highly effective, especially in a hypofractionation scheme, 17.4% to 39.4% of all patients suffer from cancer recurrence after EBRT. But, radiographic findings also correlate with significant differences in protein expression patterns. In the PCa EBRT workflow, several imaging modalities are available for grading, staging and contouring. Using image data characterisation algorithms (radiomics), one can provide a quantitative analysis of prognostic and predictive treatment outcomes. Methods: This literature review searched for original studies in radiomics for PCa in the context of EBRT. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this review includes 73 new studies and analyses datasets, imaging modality, segmentation technique, feature extraction, selection and model building methods. Results: Magnetic Resonance Imaging (MRI) is the preferred imaging modality for radiomic studies in PCa but Computed Tomography (CT), Positron Emission Tomography (PET) and Ultrasound (US) may offer valuable insights on tumour characterisation and treatment response prediction. Conclusions: Most radiomic studies used small, homogeneous and private datasets lacking external validation and variability. Future research should focus on collaborative efforts to create large, multicentric datasets and develop standardised methodologies, ensuring the full potential of radiomics in clinical practice.
Collapse
Affiliation(s)
- Bruno Mendes
- Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP), Medical Physics, Radiobiology and Radiological Protection Group, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Domingues
- Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP), Medical Physics, Radiobiology and Radiological Protection Group, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes-Quinta da Nora, 3030-199 Coimbra, Portugal
| | - João Santos
- Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP), Medical Physics, Radiobiology and Radiological Protection Group, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (I.D.); (J.S.)
- School of Medicine and Biomedical Sciences (ICBAS), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Zhu X, Shao L, Liu Z, Liu Z, He J, Liu J, Ping H, Lu J. MRI-derived radiomics models for diagnosis, aggressiveness, and prognosis evaluation in prostate cancer. J Zhejiang Univ Sci B 2023; 24:663-681. [PMID: 37551554 PMCID: PMC10423970 DOI: 10.1631/jzus.b2200619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/11/2023] [Indexed: 08/09/2023]
Abstract
Prostate cancer (PCa) is a pernicious tumor with high heterogeneity, which creates a conundrum for making a precise diagnosis and choosing an optimal treatment approach. Multiparametric magnetic resonance imaging (mp-MRI) with anatomical and functional sequences has evolved as a routine and significant paradigm for the detection and characterization of PCa. Moreover, using radiomics to extract quantitative data has emerged as a promising field due to the rapid growth of artificial intelligence (AI) and image data processing. Radiomics acquires novel imaging biomarkers by extracting imaging signatures and establishes models for precise evaluation. Radiomics models provide a reliable and noninvasive alternative to aid in precision medicine, demonstrating advantages over traditional models based on clinicopathological parameters. The purpose of this review is to provide an overview of related studies of radiomics in PCa, specifically around the development and validation of radiomics models using MRI-derived image features. The current landscape of the literature, focusing mainly on PCa detection, aggressiveness, and prognosis evaluation, is reviewed and summarized. Rather than studies that exclusively focus on image biomarker identification and method optimization, models with high potential for universal clinical implementation are identified. Furthermore, we delve deeper into the critical concerns that can be addressed by different models and the obstacles that may arise in a clinical scenario. This review will encourage researchers to design models based on actual clinical needs, as well as assist urologists in gaining a better understanding of the promising results yielded by radiomics.
Collapse
Affiliation(s)
- Xuehua Zhu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100080, China
| | - Zenan Liu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Jide He
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing 100191, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Jian Lu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
4
|
Li C, Deng M, Zhong X, Ren J, Chen X, Chen J, Xiao F, Xu H. Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI. Front Oncol 2023; 13:1198899. [PMID: 37448515 PMCID: PMC10338012 DOI: 10.3389/fonc.2023.1198899] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction This study aims to develop an imaging model based on multi-parametric MR images for distinguishing between prostate cancer (PCa) and prostate hyperplasia. Methods A total of 236 subjects were enrolled and divided into training and test sets for model construction. Firstly, a multi-view radiomics modeling strategy was designed in which different combinations of radiomics feature categories (original, LoG, and wavelet) were compared to obtain the optimal input feature sets. Minimum-redundancy maximum-relevance (mRMR) selection and least absolute shrinkage selection operator (LASSO) were used for feature reduction, and the next logistic regression method was used for model construction. Then, a Swin Transformer architecture was designed and trained using transfer learning techniques to construct the deep learning models (DL). Finally, the constructed multi-view radiomics and DL models were combined and compared for model selection and nomogram construction. The prediction accuracy, consistency, and clinical benefit were comprehensively evaluated in the model comparison. Results The optimal input feature set was found when LoG and wavelet features were combined, while 22 and 17 radiomic features in this set were selected to construct the ADC and T2 multi-view radiomic models, respectively. ADC and T2 DL models were built by transferring learning from a large number of natural images to a relatively small sample of prostate images. All individual and combined models showed good predictive accuracy, consistency, and clinical benefit. Compared with using only an ADC-based model, adding a T2-based model to the combined model would reduce the model's predictive performance. The ADCCombinedScore model showed the best predictive performance among all and was transformed into a nomogram for better use in clinics. Discussion The constructed models in our study can be used as a predictor in differentiating PCa and BPH, thus helping clinicians make better clinical treatment decisions and reducing unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Wang X, Xu C, Grzegorzek M, Sun H. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: Application to Ki-67 status and progression-free survival. Front Physiol 2022; 13:948767. [PMID: 36091379 PMCID: PMC9452776 DOI: 10.3389/fphys.2022.948767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aim to develop and validate PET/ CT image-based radiomics to determine the Ki-67 status of high-grade serous ovarian cancer (HGSOC), in which we use the metabolic subregion evolution to improve the prediction ability of the model. At the same time, the stratified effect of the radiomics model on the progression-free survival rate of ovarian cancer patients was illustrated.Materials and methods: We retrospectively reviewed 161 patients with HGSOC from April 2013 to January 2019. 18F-FDG PET/ CT images before treatment, pathological reports, and follow-up data were analyzed. A randomized grouping method was used to divide ovarian cancer patients into a training group and validation group. PET/ CT images were fused to extract radiomics features of the whole tumor region and radiomics features based on the Habitat method. The feature is dimensionality reduced, and meaningful features are screened to form a signature for predicting the Ki-67 status of ovarian cancer. Meanwhile, survival analysis was conducted to explore the hierarchical guidance significance of radiomics in the prognosis of patients with ovarian cancer.Results: Compared with texture features extracted from the whole tumor, the texture features generated by the Habitat method can better predict the Ki-67 state (p < 0.001). Radiomics based on Habitat can predict the Ki-67 expression accurately and has the potential to become a new marker instead of Ki-67. At the same time, the Habitat model can better stratify the prognosis (p < 0.05).Conclusion: We found a noninvasive imaging predictor that could guide the stratification of prognosis in ovarian cancer patients, which is related to the expression of Ki-67 in tumor tissues. This method is of great significance for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongzan Sun,
| |
Collapse
|
6
|
More than Meets the Eye: Using Textural Analysis and Artificial Intelligence as Decision Support Tools in Prostate Cancer Diagnosis—A Systematic Review. J Pers Med 2022; 12:jpm12060983. [PMID: 35743766 PMCID: PMC9225075 DOI: 10.3390/jpm12060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Introduction: Multiparametric magnetic resonance imaging (mpMRI) is the main imagistic tool employed to assess patients suspected of harboring prostate cancer (PCa), setting the indication for targeted prostate biopsy. However, both mpMRI and targeted prostate biopsy are operator dependent. The past decade has been marked by the emerging domain of radiomics and artificial intelligence (AI), with extended application in medical diagnosis and treatment processes. (2) Aim: To present the current state of the art regarding decision support tools based on texture analysis and AI for the prediction of aggressiveness and biopsy assistance. (3) Materials and Methods: We performed literature research using PubMed MeSH, Scopus and WoS (Web of Science) databases and screened the retrieved papers using PRISMA principles. Articles that addressed PCa diagnosis and staging assisted by texture analysis and AI algorithms were included. (4) Results: 359 papers were retrieved using the keywords “prostate cancer”, “MRI”, “radiomics”, “textural analysis”, “artificial intelligence”, “computer assisted diagnosis”, out of which 35 were included in the final review. In total, 24 articles were presenting PCa diagnosis and prediction of aggressiveness, 7 addressed extracapsular extension assessment and 4 tackled computer-assisted targeted prostate biopsies. (5) Conclusions: The fusion of radiomics and AI has the potential of becoming an everyday tool in the process of diagnosis and staging of the prostate malignancies.
Collapse
|
7
|
Spohn SK, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH, Fechter T, Hölscher T, Grosu R, Chiti A, Grosu AL, Zamboglou C. Radiomics in prostate cancer imaging for a personalized treatment approach - current aspects of methodology and a systematic review on validated studies. Theranostics 2021; 11:8027-8042. [PMID: 34335978 PMCID: PMC8315055 DOI: 10.7150/thno.61207] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies of men in the world. Due to a variety of treatment options in different risk groups, proper diagnostic and risk stratification is pivotal in treatment of PCa. The development of precise medical imaging procedures simultaneously to improvements in big data analysis has led to the establishment of radiomics - a computer-based method of extracting and analyzing image features quantitatively. This approach bears the potential to assess and improve PCa detection, tissue characterization and clinical outcome prediction. This article gives an overview on the current aspects of methodology and systematically reviews available literature on radiomics in PCa patients, showing its potential for personalized therapy approaches. The qualitative synthesis includes all imaging modalities and focuses on validated studies, putting forward future directions.
Collapse
Affiliation(s)
- Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Alisa S. Bettermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Tobias Fechter
- Department of Radiation Oncology - Division of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Tobias Hölscher
- Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Radu Grosu
- Institute of Computer Engineering, Vienne University of Technology, Vienna, Austria
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol, Cyprus
| |
Collapse
|
8
|
Smith BJ, Buatti JM, Bauer C, Ulrich EJ, Ahmadvand P, Budzevich MM, Gillies RJ, Goldgof D, Grkovski M, Hamarneh G, Kinahan PE, Muzi JP, Muzi M, Laymon CM, Mountz JM, Nehmeh S, Oborski MJ, Zhao B, Sunderland JJ, Beichel RR. Multisite Technical and Clinical Performance Evaluation of Quantitative Imaging Biomarkers from 3D FDG PET Segmentations of Head and Neck Cancer Images. ACTA ACUST UNITED AC 2021; 6:65-76. [PMID: 32548282 PMCID: PMC7289247 DOI: 10.18383/j.tom.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantitative imaging biomarkers (QIBs) provide medical image-derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs. We illustrate a new Bayesian statistical approach to characterize the robustness of QIBs to different processing factors. Study data consist of 22 QIBs measured on 47 head and neck tumors in 10 positron emission tomography/computed tomography scans segmented manually and with semiautomated methods used by 7 institutional members of the NCI Quantitative Imaging Network. QIB performance is estimated and compared across institutions with respect to measurement errors and power to recover statistical associations with clinical outcomes. Analysis findings summarize the performance impact of different segmentation methods used by Quantitative Imaging Network members. Robustness of some advanced biomarkers was found to be similar to conventional markers, such as maximum standardized uptake value. Such similarities support current pursuits to better characterize disease and predict outcomes by developing QIBs that use more imaging information and are robust to different processing factors. Nevertheless, to ensure reproducibility of QIB measurements and measures of association with clinical outcomes, errors owing to segmentation methods need to be reduced.
Collapse
Affiliation(s)
| | | | | | - Ethan J Ulrich
- Electrical and Computer Engineering.,Biomedical Engineering, The University of Iowa, Iowa City, IA
| | - Payam Ahmadvand
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Mikalai M Budzevich
- H. Lee Moffitt Cancer Center & Research Institute, Department of Cancer Physiology, FL
| | - Robert J Gillies
- H. Lee Moffitt Cancer Center & Research Institute, Department of Cancer Physiology, FL
| | - Dmitry Goldgof
- Department of Computer Science and Engineering, University of South Florida, FL
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Paul E Kinahan
- Department of Radiology, The University of Washington Medical Center, Seattle, WA
| | - John P Muzi
- Department of Radiology, The University of Washington Medical Center, Seattle, WA
| | - Mark Muzi
- Department of Radiology, The University of Washington Medical Center, Seattle, WA
| | - Charles M Laymon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA.,Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medical College, NY; and
| | - Matthew J Oborski
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, New York, NY
| | | | | |
Collapse
|
9
|
Jin T, Zhang H, Liu X, Kong X, Makamure J, Chen Z, Alwalid O, Yao Z, Wang J. Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI. Eur Radiol 2021; 31:5595-5604. [PMID: 33847812 DOI: 10.1007/s00330-020-07625-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the correlation between enhancement degrees of brain metastases on contrast-enhanced T2-fluid-attenuated inversion recovery (CE-T2 FLAIR) and vascular permeability parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS Thirty-nine patients with brain metastases were prospectively collected. They underwent non-enhanced T2 FLAIR, DCE-MRI, CE-T2 FLAIR, and contrast-enhanced three-dimensional brain volume imaging (CE-BRAVO). Quantitative parameters of DCE-MRI were evaluated for all lesions, which included volume transfer constant (Ktrans), rate constant (Kep), and fractional volume of the extracellular extravascular space (Ve). Contrast ratio (CR) and percentage increase (PI) values of all lesions on CE-T2 FLAIR were also measured. The tumor enhancement degree on CE-T2 FLAIR in relation to CE-BRAVO was visually classified as higher (group A), equal (group B), and lower (group C). RESULTS A total of 82 brain metastases were evaluated, including 31 in group A, 19 in group B, and 32 in group C. The Ktrans and Kep were negatively correlated with the CR (ρ = - 0.551, p < 0.001 and ρ = - 0.708, p < 0.001, respectively) and PI (ρ = - 0.511, p < 0.001 and ρ = - 0.621, p < 0.001, respectively). The Ktrans and Kep of group A were significantly lower than those of group C (both p < 0.001). No significant difference was found in Ve among the groups (p = 0.327). CONCLUSIONS The enhancement degree of brain metastases on CE-T2 FLAIR is negatively correlated with Ktrans and Kep values, which indicate that vascular permeability parameters may play an important role in explaining the difference in enhancement between CE-T2 FLAIR and CE-BRAVO. KEY POINTS • The enhancement degree on CE-T2 FLAIR was negatively correlated with Ktrans and Kep values. • The vascular permeability of brain metastasis accounted for the difference in enhancement degree between CE-T2 FLAIR and CE-BRAVO. • CE-T2 FLAIR is useful for detecting brain metastases with mild disruption of the blood-brain barrier.
Collapse
Affiliation(s)
- Teng Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Joyman Makamure
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziwen Chen
- Department of General Surgery, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Raghunand N, Gatenby RA. Bridging Spatial Scales From Radiographic Images to Cellular and Molecular Properties in Cancers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00053-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Gillies RJ, Schabath MB. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol Biomarkers Prev 2020; 29:2556-2567. [PMID: 32917666 DOI: 10.1158/1055-9965.epi-20-0075] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/18/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
12
|
Syed AK, Whisenant JG, Barnes SL, Sorace AG, Yankeelov TE. Multiparametric Analysis of Longitudinal Quantitative MRI data to Identify Distinct Tumor Habitats in Preclinical Models of Breast Cancer. Cancers (Basel) 2020; 12:cancers12061682. [PMID: 32599906 PMCID: PMC7352623 DOI: 10.3390/cancers12061682] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
This study identifies physiological tumor habitats from quantitative magnetic resonance imaging (MRI) data and evaluates their alterations in response to therapy. Two models of breast cancer (BT-474 and MDA-MB-231) were imaged longitudinally with diffusion-weighted MRI and dynamic contrast-enhanced MRI to quantify tumor cellularity and vascularity, respectively, during treatment with trastuzumab or albumin-bound paclitaxel. Tumors were stained for anti-CD31, anti-Ki-67, and H&E. Imaging and histology data were clustered to identify tumor habitats and percent tumor volume (MRI) or area (histology) of each habitat was quantified. Histological habitats were correlated with MRI habitats. Clustering of both the MRI and histology data yielded three clusters: high-vascularity high-cellularity (HV-HC), low-vascularity high-cellularity (LV-HC), and low-vascularity low-cellularity (LV-LC). At day 4, BT-474 tumors treated with trastuzumab showed a decrease in LV-HC (p = 0.03) and increase in HV-HC (p = 0.03) percent tumor volume compared to control. MDA-MB-231 tumors treated with low-dose albumin-bound paclitaxel showed a longitudinal decrease in LV-HC percent tumor volume at day 3 (p = 0.01). Positive correlations were found between histological and imaging-derived habitats: HV-HC (BT-474: p = 0.03), LV-HC (MDA-MB-231: p = 0.04), LV-LC (BT-474: p = 0.04; MDA-MB-231: p < 0.01). Physiologically distinct tumor habitats associated with therapeutic response were identified with MRI and histology data in preclinical models of breast cancer.
Collapse
Affiliation(s)
- Anum K Syed
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephanie L Barnes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna G Sorace
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Abstract
The National Cancer Institute's Quantitative Imaging Network (QIN) has thrived over the past 12 years with an emphasis on the development of image-based decision support software tools for improving measurements of imaging metrics. An overarching goal has been to develop advanced tools that could be translated into clinical trials to provide for improved prediction of response to therapeutic interventions. This article provides an overview of the successes in development and translation of new algorithms into the clinical workflow by the many research teams of the Quantitative Imaging Network.
Collapse
|