1
|
Guay KP, Ibba R, Kiappes J, Vasiljević S, Bonì F, De Benedictis M, Zeni I, Le Cornu JD, Hensen M, Chandran AV, Kantsadi AL, Caputo AT, Blanco Capurro JI, Bayo Y, Hill JC, Hudson K, Lia A, Brun J, Withers SG, Martí M, Biasini E, Santino A, De Rosa M, Milani M, Modenutti CP, Hebert DN, Zitzmann N, Roversi P. A quinolin-8-ol sub-millimolar inhibitor of UGGT, the ER glycoprotein folding quality control checkpoint. iScience 2023; 26:107919. [PMID: 37822503 PMCID: PMC10562782 DOI: 10.1016/j.isci.2023.107919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 μM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 μM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.
Collapse
Affiliation(s)
- Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23A, 07100 Sassari, Italy
| | - J.L. Kiappes
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Francesco Bonì
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Ilaria Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
| | - James D. Le Cornu
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anu V. Chandran
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anastassia L. Kantsadi
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Alessandro T. Caputo
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Juan I. Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Yusupha Bayo
- Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Johan C. Hill
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Kieran Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Juliane Brun
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Marcelo Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
- Dulbecco Telethon Institute, University of Trento, Povo, 38123 Trento, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Matteo De Rosa
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Mario Milani
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA-CNR Unit of Milano, via Bassini 15, 20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HR Leicester, UK
| |
Collapse
|
2
|
Delivery of Nucleotide Sugars to the Mammalian Golgi: A Very Well (un)Explained Story. Int J Mol Sci 2022; 23:ijms23158648. [PMID: 35955785 PMCID: PMC9368800 DOI: 10.3390/ijms23158648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleotide sugars (NSs) serve as substrates for glycosylation reactions. The majority of these compounds are synthesized in the cytoplasm, whereas glycosylation occurs in the endoplasmic reticulum (ER) and Golgi lumens, where catalytic domains of glycosyltransferases (GTs) are located. Therefore, translocation of NS across the organelle membranes is a prerequisite. This process is thought to be mediated by a group of multi-transmembrane proteins from the SLC35 family, i.e., nucleotide sugar transporters (NSTs). Despite many years of research, some uncertainties/inconsistencies related with the mechanisms of NS transport and the substrate specificities of NSTs remain. Here we present a comprehensive review of the NS import into the mammalian Golgi, which consists of three major parts. In the first part, we provide a historical view of the experimental approaches used to study NS transport and evaluate the most important achievements. The second part summarizes various aspects of knowledge concerning NSTs, ranging from subcellular localization up to the pathologies related with their defective function. In the third part, we present the outcomes of our research performed using mammalian cell-based models and discuss its relevance in relation to the general context.
Collapse
|
3
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
4
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
5
|
Wiktor M, Wiertelak W, Maszczak-Seneczko D, Balwierz PJ, Szulc B, Olczak M. Identification of novel potential interaction partners of UDP-galactose (SLC35A2), UDP-N-acetylglucosamine (SLC35A3) and an orphan (SLC35A4) nucleotide sugar transporters. J Proteomics 2021; 249:104321. [PMID: 34242836 DOI: 10.1016/j.jprot.2021.104321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Nucleotide sugar transporters (NSTs) are ER and Golgi-resident members of the solute carrier 35 (SLC35) family which supply substrates for glycosylation by exchanging lumenal nucleotide monophosphates for cytosolic nucleotide sugars. Defective NSTs have been associated with congenital disorders of glycosylation (CDG), however, molecular basis of many types of CDG remains poorly characterized. To better understand the biology of NSTs, we identified potential interaction partners of UDP-galactose transporter (SLC35A2), UDP-N-acetylglucosamine transporter (SLC35A3) and an orphan nucleotide sugar transporter SLC35A4 of to date unassigned specificity. For this purpose, each of the SLC35A2-A4 proteins was used as a bait in four independent pull-down experiments and the identity of the immunoprecipitated material was discovered using MS techniques. From the candidate list obtained, we selected a few for which the interaction was confirmed in vitro using the NanoBiT system, a split luciferase-based luminescent technique. NSTs have been shown to interact with two ATPases (ATP2A2, ATP2C1), Golgi pH regulator B (GPR89B) and calcium channel (TMCO1), which may reflect the regulation of glycosylation by ion homeostasis, and with basigin (BSG). Our findings provide a starting point for the NST interaction network discovery in order to better understand how glycosylation is regulated and linked to other cellular processes. SIGNIFICANCE: Despite the facts that nucleotide sugar transporters are a key component of the protein glycosylation machinery, and deficiencies in their activity underlie serious metabolic diseases, biology, function and regulation of these essential proteins remain enigmatic. In this study we have advanced the field by identifying sets of new potential interaction partners for UDP-galactose transporter (SLC35A2), UDP-N-acetylglucosamine transporter (SLC35A3) and an orphan transporter SLC35A4 of yet undefined role. Several of these new interactions were additionally confirmed in vitro using the NanoBiT system, a split luciferase complementation assay. This work is also significant in that it addresses the overall challenge of discovering membrane protein interaction partners by a detailed comparison of 4 different co-immunoprecipitation strategies and by custom sample preparation and data processing workflows.
Collapse
Affiliation(s)
- Maciej Wiktor
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Wojciech Wiertelak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | | | - Piotr Jan Balwierz
- Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, United Kingdom.
| | - Bożena Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
6
|
Szulc B, Sosicka P, Maszczak-Seneczko D, Skurska E, Shauchuk A, Olczak T, Freeze HH, Olczak M. Biosynthesis of GlcNAc-rich N- and O-glycans in the Golgi apparatus does not require the nucleotide sugar transporter SLC35A3. J Biol Chem 2020; 295:16445-16463. [PMID: 32938718 DOI: 10.1074/jbc.ra119.012362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.
Collapse
Affiliation(s)
- Bozena Szulc
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Sosicka
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland; Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Auhen Shauchuk
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
7
|
Ondo K, Arakawa H, Nakano M, Fukami T, Nakajima M. SLC35B1 significantly contributes to the uptake of UDPGA into the endoplasmic reticulum for glucuronidation catalyzed by UDP-glucuronosyltransferases. Biochem Pharmacol 2020; 175:113916. [PMID: 32179043 DOI: 10.1016/j.bcp.2020.113916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
The transport of UDP-glucuronic acid (UDPGA), a co-substrate of UDP-glucuronosyltransferase (UGT), to the intraluminal side of the endoplasmic reticulum (ER) is an essential step in the glucuronidation of exogenous and endogenous compounds. According to a previous study, the expression of recombinant SLC35B1, SLC35B4, or SLC35D1, nucleotide sugar transporters, in V79 cells has the potential to transport UDPGA into the lumen of microsomes. The purpose of this study is to examine whether the transport of UDPGA by these transporters substantially affects UGT activity. Since the knockdown of UDP-glucose 6-dehydrogenase, a synthetase of UDPGA, in HEK293 cells stably expressing UGT1A1 (HEK/UGT1A1 cells) resulted in a significant decrease in 4-methylumbelliferone (4-MU) glucuronosyltransferase activity, supplementation of a sufficient amount of UDPGA is required for UGT activity. By performing qRT-PCR using cDNA samples from 21 human liver samples, we observed levels of the SLC35B1 and SLC35D1 mRNAs that were 15- and 14-fold higher, respectively, than the levels of the SLC35B4 mRNA, and SLC35B1 showed the largest (37-fold) interindividual variability. Interestingly, 4-MU glucuronosyltransferase activity was significantly decreased upon the knockdown of SLC35B1 in HEK/UGT1A1 cells, and this phenomenon was also observed in HepaRG cells. Using siRNAs targeting 23 different SLC35 subfamilies, the knockdown of SLC35B1 and SLC35E3 decreased 4-MU glucuronosyltransferase activity in HEK/UGT1A1 cells. However, the 4-MU glucuronosyltransferase activity was not altered by SLC35E3 knockdown in HepaRG cells, suggesting that SLC35B1 was the main transporter of UDPGA into the ER in the human liver. In conclusion, SLC35B1 is a key modulator of UGT activity by transporting UDPGA to the intraluminal side of the ER.
Collapse
Affiliation(s)
- Kyoko Ondo
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
8
|
Hadley B, Litfin T, Day CJ, Haselhorst T, Zhou Y, Tiralongo J. Nucleotide Sugar Transporter SLC35 Family Structure and Function. Comput Struct Biotechnol J 2019; 17:1123-1134. [PMID: 31462968 PMCID: PMC6709370 DOI: 10.1016/j.csbj.2019.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
The covalent attachment of sugars to growing glycan chains is heavily reliant on a specific family of solute transporters (SLC35), the nucleotide sugar transporters (NSTs) that connect the synthesis of activated sugars in the nucleus or cytosol, to glycosyltransferases that reside in the lumen of the endoplasmic reticulum (ER) and/or Golgi apparatus. This review provides a timely update on recent progress in the NST field, specifically we explore several NSTs of the SLC35 family whose substrate specificity and function have been poorly understood, but where recent significant progress has been made. This includes SLC35 A4, A5 and D3, as well as progress made towards understanding the association of SLC35A2 with SLC35A3 and how this relates to their potential regulation, and how the disruption to the dilysine motif in SLC35B4 causes mislocalisation, calling into question multisubstrate NSTs and their subcellular localisation and function. We also report on the recently described first crystal structure of an NST, the SLC35D2 homolog Vrg-4 from yeast. Using this crystal structure, we have generated a new model of SLC35A1, (CMP-sialic acid transporter, CST), with structural and mechanistic predictions based on all known CST-related data, and includes an overview of reported mutations that alter transport and/or substrate recognition (both de novo and site-directed). We also present a model of the CST-del177 isoform that potentially explains why the human CST isoform remains active while the hamster CST isoform is inactive, and we provide a possible alternate access mechanism that accounts for the CST being functional as either a monomer or a homodimer. Finally we provide an update on two NST crystal structures that were published subsequent to the submission and during review of this report.
Collapse
Affiliation(s)
- Barbara Hadley
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Thomas Litfin
- School of Information and Communication Technology, Griffith University, Gold Coast Campus, Queensland 4212, Australia
| | - Chris J. Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
- School of Information and Communication Technology, Griffith University, Gold Coast Campus, Queensland 4212, Australia
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
9
|
A novel YAP1/SLC35B4 regulatory axis contributes to proliferation and progression of gastric carcinoma. Cell Death Dis 2019; 10:452. [PMID: 31175271 PMCID: PMC6555804 DOI: 10.1038/s41419-019-1674-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Solute carrier family 35 member B4 (SLC35B4), a nucleotide sugar transporter, is capable of transporting UDP-xylose and UDP-GlcNAc from the cytoplasm to the lumen of the endoplasmic reticulum and Golgi. SLC35B4 has a pivotal role in glycosylation of biological macromolecules. However, its functional roles and regulatory mechanisms in malignant diseases remain unknown. Here, using the cDNA arrays, promoter reporter assays, and chromatin immunoprecipitation assays, we demonstrated that SLC35B4 is directly transactivated by YAP1–TEADs complex in gastric cancer (GC) cells. CCK-8, plate colony formation and soft agar assays revealed that SLC35B4 is essential for survival and proliferation in GC cells and nude mice models. SLC35B4 expression is markedly higher in GC tissues compared with control noncancerous tissues. Immunohistochemistry revealed that SLC35B4 expression is positively correlated with YAP1 expression in human GC tissues, and this correlation is also confirmed in the GC TCGA data set. GC patients with high levels of SLC35B4 expression have poorer prognosis than those with low levels of SLC35B4 expression. Collectively, our findings defined SLC35B4 as an important downstream oncogenic target of YAP1, suggesting that dysregulated signaling of a novel YAP1/SLC35B4 axis promotes GC development and progression, and this axis could be a potential candidate for prognosis and therapeutics in GC.
Collapse
|
10
|
Sosicka P, Bazan B, Maszczak-Seneczko D, Shauchuk Y, Olczak T, Olczak M. SLC35A5 Protein-A Golgi Complex Member with Putative Nucleotide Sugar Transport Activity. Int J Mol Sci 2019; 20:ijms20020276. [PMID: 30641943 PMCID: PMC6359379 DOI: 10.3390/ijms20020276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Solute carrier family 35 member A5 (SLC35A5) is a member of the SLC35A protein subfamily comprising nucleotide sugar transporters. However, the function of SLC35A5 is yet to be experimentally determined. In this study, we inactivated the SLC35A5 gene in the HepG2 cell line to study a potential role of this protein in glycosylation. Introduced modification affected neither N- nor O-glycans. There was also no influence of the gene knock-out on glycolipid synthesis. However, inactivation of the SLC35A5 gene caused a slight increase in the level of chondroitin sulfate proteoglycans. Moreover, inactivation of the SLC35A5 gene resulted in the decrease of the uridine diphosphate (UDP)-glucuronic acid, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine Golgi uptake, with no influence on the UDP-galactose transport activity. Further studies demonstrated that SLC35A5 localized exclusively to the Golgi apparatus. Careful insight into the protein sequence revealed that the C-terminus of this protein is extremely acidic and contains distinctive motifs, namely DXEE, DXD, and DXXD. Our studies show that the C-terminus is directed toward the cytosol. We also demonstrated that SLC35A5 formed homomers, as well as heteromers with other members of the SLC35A protein subfamily. In conclusion, the SLC35A5 protein might be a Golgi-resident multiprotein complex member engaged in nucleotide sugar transport.
Collapse
Affiliation(s)
- Paulina Sosicka
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Bożena Bazan
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Dorota Maszczak-Seneczko
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Yauhen Shauchuk
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Teresa Olczak
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| |
Collapse
|
11
|
Bazan B, Wiktor M, Maszczak-Seneczko D, Olczak T, Kaczmarek B, Olczak M. Lysine at position 329 within a C-terminal dilysine motif is crucial for the ER localization of human SLC35B4. PLoS One 2018; 13:e0207521. [PMID: 30458018 PMCID: PMC6245738 DOI: 10.1371/journal.pone.0207521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
SLC35B4 belongs to the solute carrier 35 (SLC35) family whose best-characterized members display a nucleotide sugar transporting activity. Using an experimental model of HepG2 cells and indirect immunofluorescent staining, we verified that SLC35B4 was localized to the endoplasmic reticulum (ER). We demonstrated that dilysine motif, especially lysine at position 329, is crucial for the ER localization of this protein in human cells and therefore one should use protein C-tagging with caution. To verify the importance of the protein in glycoconjugates synthesis, we generated SLC35B4-deficient HepG2 cell line using CRISPR-Cas9 approach. Our data showed that knock-out of the SLC35B4 gene does not affect major UDP-Xyl- and UDP-GlcNAc-dependent glycosylation pathways.
Collapse
Affiliation(s)
- Bożena Bazan
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Maciej Wiktor
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Teresa Olczak
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Beata Kaczmarek
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
12
|
EOGT and O-GlcNAc on secreted and membrane proteins. Biochem Soc Trans 2017; 45:401-408. [PMID: 28408480 DOI: 10.1042/bst20160165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
Here, we describe a recently discovered O-GlcNAc transferase termed EOGT for EGF domain-specific O-GlcNAc transferase. EOGT transfers GlcNAc (N-acetylglucosamine) to Ser or Thr in secreted and membrane proteins that contain one or more epidermal growth factor-like repeats with a specific consensus sequence. Thus, EOGT is distinct from OGT, the O-GlcNAc transferase, that transfers GlcNAc to Ser/Thr in proteins of the cytoplasm or nucleus. EOGT and OGT are in separate cellular compartments and have mostly distinct substrates, although both can act on cytoplasmic (OGT) and lumenal (EOGT) domains of transmembrane proteins. The present review will describe known substrates of EOGT and biological roles for EOGT in Drosophila and humans. Mutations in EOGT that give rise to Adams-Oliver Syndrome in humans will also be discussed.
Collapse
|
13
|
Sosicka P, Maszczak-Seneczko D, Bazan B, Shauchuk Y, Kaczmarek B, Olczak M. An insight into the orphan nucleotide sugar transporter SLC35A4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:825-838. [PMID: 28167211 DOI: 10.1016/j.bbamcr.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
SLC35A4 has been classified in the SLC35A subfamily based on amino acid sequence homology. Most of the proteins belonging to the SLC35 family act as transporters of nucleotide sugars. In this study, the subcellular localization of endogenous SLC35A4 was determined via immunofluorescence staining, and it was demonstrated that SLC35A4 localizes mainly to the Golgi apparatus. In silico topology prediction suggests that SLC35A4 has an uneven number of transmembrane domains and its N-terminus is directed towards the Golgi lumen. However, an experimental assay refuted this prediction: SLC35A4 has an even number of transmembrane regions with both termini facing the cytosol. In vivo interaction analysis using the FLIM-FRET approach revealed that SLC35A4 neither forms homomers nor associates with other members of the SLC35A subfamily except SLC35A5. Additional assays demonstrated that endogenous SLC35A4 is 10 to 40nm proximal to SLC35A2 and SLC35A3. To determine SLC35A4 function SLC35A4 knock-out cells were generated with the CRISPR-Cas9 approach. Although no significant changes in glycosylation were observed, the introduced mutation influenced the subcellular distribution of the SLC35A2/SLC35A3 complexes. Additional FLIM-FRET experiments revealed that overexpression of SLC35A4-BFP together with SLC35A3 and the SLC35A2-Golgi splice variant negatively affects the interaction between the two latter proteins. The results presented here strongly indicate a modulatory role for SLC35A4 in intracellular trafficking of SLC35A2/SLC35A3 complexes.
Collapse
Affiliation(s)
- Paulina Sosicka
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Dorota Maszczak-Seneczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Bożena Bazan
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Yauhen Shauchuk
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Beata Kaczmarek
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| |
Collapse
|
14
|
Maszczak-Seneczko D, Sosicka P, Kaczmarek B, Majkowski M, Luzarowski M, Olczak T, Olczak M. UDP-galactose (SLC35A2) and UDP-N-acetylglucosamine (SLC35A3) Transporters Form Glycosylation-related Complexes with Mannoside Acetylglucosaminyltransferases (Mgats). J Biol Chem 2015; 290:15475-15486. [PMID: 25944901 DOI: 10.1074/jbc.m115.636670] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 01/18/2023] Open
Abstract
UDP-galactose transporter (UGT; SLC35A2) and UDP-N-acetylglucosamine transporter (NGT; SLC35A3) form heterologous complexes in the Golgi membrane. NGT occurs in close proximity to mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5). In this study we analyzed whether NGT and both splice variants of UGT (UGT1 and UGT2) are able to interact with four different mannoside acetylglucosaminyltransferases (Mgat1, Mgat2, Mgat4B, and Mgat5). Using an in situ proximity ligation assay, we found that all examined glycosyltransferases are in the vicinity of these UDP-sugar transporters both at the endogenous level and upon overexpression. This observation was confirmed via the FLIM-FRET approach for both NGT and UGT1 complexes with Mgats. This study reports for the first time close proximity between endogenous nucleotide sugar transporters and glycosyltransferases. We also observed that among all analyzed Mgats, only Mgat4B occurs in close proximity to UGT2, whereas the other three Mgats are more distant from UGT2, and it was only possible to visualize their vicinity using proximity ligation assay. This strongly suggests that the distance between these protein pairs is longer than 10 nm but at the same time shorter than 40 nm. This study adds to the understanding of glycosylation, one of the most important post-translational modifications, which affects the majority of macromolecules. Our research shows that complex formation between nucleotide sugar transporters and glycosyltransferases might be a more common phenomenon than previously thought.
Collapse
Affiliation(s)
- Dorota Maszczak-Seneczko
- Laboratories of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Paulina Sosicka
- Laboratories of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Beata Kaczmarek
- Laboratories of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Michał Majkowski
- Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Marcin Luzarowski
- Laboratories of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Teresa Olczak
- Laboratories of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratories of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| |
Collapse
|
15
|
Ogawa M, Sawaguchi S, Furukawa K, Okajima T. N-acetylglucosamine modification in the lumen of the endoplasmic reticulum. Biochim Biophys Acta Gen Subj 2015; 1850:1319-24. [PMID: 25791024 DOI: 10.1016/j.bbagen.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification of epidermal growth factor (EGF) domains catalyzed by EGF domain O-GlcNAc transferase (EOGT) is the first example of GlcNAc modification in the lumen of the endoplasmic reticulum (ER). SCOPE OF REVIEW This review summarizes current knowledge on the EOGT-catalyzed O-GlcNAc modification of EGF domains obtained through biochemical characterization, genetic analysis in Drosophila, and identification of human EOGT mutation. Additionally, this review discusses GTDC2-another ER protein homologous to EOGT that catalyzes the GlcNAc modification of O-mannosylated α-dystroglycan-and other components of the biosynthetic pathway involved in GlcNAc modification in the ER lumen. MAJOR CONCLUSIONS GlcNAc modification in the ER lumen has been identified as a novel type of protein modification that regulates specific protein function. Moreover, abnormal GlcNAc modification in the ER lumen is responsible for Adams-Oliver syndrome and Walker-Warburg syndrome. GENERAL SIGNIFICANCE Elucidation of the biological function of GlcNAc modification in the ER lumen will provide new insights into the unique roles of O-glycans, whose importance has been demonstrated in multifunctional glycoproteins such as Notch receptors and α-dystroglyan.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan; Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Shogo Sawaguchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| |
Collapse
|
16
|
Ogawa M, Sawaguchi S, Kawai T, Nadano D, Matsuda T, Yagi H, Kato K, Furukawa K, Okajima T. Impaired O-linked N-acetylglucosaminylation in the endoplasmic reticulum by mutated epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine transferase found in Adams-Oliver syndrome. J Biol Chem 2014; 290:2137-49. [PMID: 25488668 DOI: 10.1074/jbc.m114.598821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGT(R377Q) were not affected. Importantly, the interaction between UDP-GlcNAc and EOGT(R377Q) was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829
| | - Shogo Sawaguchi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Takami Kawai
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Daita Nadano
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Tsukasa Matsuda
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Hirokazu Yagi
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and
| | - Koichi Kato
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and the Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065,
| |
Collapse
|
17
|
Sosicka P, Jakimowicz P, Olczak T, Olczak M. Short N-terminal region of UDP-galactose transporter (SLC35A2) is crucial for galactosylation of N-glycans. Biochem Biophys Res Commun 2014; 454:486-92. [PMID: 25451267 DOI: 10.1016/j.bbrc.2014.10.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
UDP-galactose transporter (UGT) and UDP-N-acetylglucosamine transporter (NGT) form heterologous complexes in the Golgi apparatus (GA) membrane. We aimed to identify UGT region responsible for galactosylation of N-glycans. Chimeric proteins composed of human UGT and either NGT or CMP-sialic acid transporter (CST) localized to the GA, and all but UGT/CST chimera corrected galactosylation defect in UGT-deficient cell lines, although at different efficiency. Importantly, short N-terminal region composed of 35 N-terminal amino-acid residues of UGT was crucial for galactosylation of N-glycans. The remaining molecule must be derived from NGT not CST, confirming that the role played by UGT and NGT is coupled.
Collapse
Affiliation(s)
- Paulina Sosicka
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Piotr Jakimowicz
- Laboratory of Biotechnology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| |
Collapse
|
18
|
Maszczak-Seneczko D, Sosicka P, Olczak T, Jakimowicz P, Majkowski M, Olczak M. UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate. J Biol Chem 2013; 288:21850-60. [PMID: 23766508 DOI: 10.1074/jbc.m113.460543] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in the amount of highly branched tri- and tetraantennary N-glycans, whereas monoantennary and diantennary ones remained unchanged or even were accumulated. Silencing the expression of NGT in Madin-Darby canine kidney II cells resulted in a dramatic decrease in the keratan sulfate content, whereas no changes in biosynthesis of heparan sulfate were observed. We also demonstrated for the first time close proximity between NGT and mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5) in the Golgi membrane. We conclude that NGT may be important for the biosynthesis of highly branched, multiantennary complex N-glycans and keratan sulfate. We hypothesize that NGT may specifically supply β-1,3-N-acetylglucosaminyl-transferase 7 (β3GnT7), Mgat5, and possibly mannosyl (α-1,3-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.
Collapse
Affiliation(s)
- Dorota Maszczak-Seneczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, 2 Tamka Street, 50-137 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Olczak M, Maszczak-Seneczko D, Sosicka P, Jakimowicz P, Olczak T. UDP-Gal/UDP-GlcNAc chimeric transporter complements mutation defect in mammalian cells deficient in UDP-Gal transporter. Biochem Biophys Res Commun 2013; 434:473-8. [PMID: 23583405 DOI: 10.1016/j.bbrc.2013.03.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
The role of UDP-galactose transporter (UGT; SLC35A2) and UDP-N-acetylglucosamine transporter (NGT; SLC35A3) in glycosylation of macromolecules may be coupled and either of the transporters may partially replace the function played by its partner. The aim of this study was to construct chimeric transporters composed of the N-terminal portion of human NGT and the C-terminal portion of human UGT1 or UGT2 (NGT-UGT1 or NGT-UGT2, respectively), as well as of the N-terminal portion of UGT and C-terminal portion of NGT (UGT-NGT), overexpress them stably in UGT-deficient CHO-Lec8 and MDCK-RCA(r) cells, and characterize their involvement in glycosylation. Two chimeric proteins, NGT-UGT1 and NGT-UGT2, did not overexpress properly. In contrast, UGT-NGT chimeric protein was successfully overexpressed and localized properly to the Golgi apparatus. UGT-NGT chimeric transporter delivered UDP-Gal to the Golgi vesicles of UGT-deficient cells, which resulted in the increased content of galactosylated structures to such an extent that the wild-type phenotypes were completely restored. Our data further support our hypothesis that UGT and NGT cooperate in the UDP-Gal delivery for glycosyltransferases located in the Golgi apparatus. In a wider context, the results gained in this study add to our understanding of glycosylation, one of the basic posttranslational modifications, which affects the majority of macromolecules.
Collapse
Affiliation(s)
- Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, 2 Tamka St, 50-137 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
20
|
Maszczak-Seneczko D, Sosicka P, Majkowski M, Olczak T, Olczak M. UDP-N-acetylglucosamine transporter and UDP-galactose transporter form heterologous complexes in the Golgi membrane. FEBS Lett 2012; 586:4082-7. [PMID: 23089177 DOI: 10.1016/j.febslet.2012.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
UDP-galactose transporter (UGT; SLC35A2) and UDP-N-acetylglucosamine transporter (NGT; SLC35A3) are evolutionarily related. We hypothesize that their role in glycosylation may be coupled through heterologous complex formation. Coimmunoprecipitation analysis and FLIM-FRET measurements performed on living cells showed that NGT and UGT form complexes when overexpressed in MDCK-RCA(r) cells. We also postulate that the interaction of NGT and UGT may explain the dual localization of UGT2. For the first time we demonstrated in vivo homodimerization of the NGT nucleotide sugar transporter. In conclusion, we suggest that NGT and UGT function in glycosylation is combined via their mutual interaction.
Collapse
|