1
|
Wang S, Chen J, Zhu X, Huang T, Xu H, Ying G, Qian H, Lin W, Tung Y, Khan KU, Guo H, Zheng G, Lu H, Zhang G. Clinical and genetic analysis of a case of late onset carbamoyl phosphate synthase I deficiency caused by CPS1 mutation and literature review. BMC Med Genomics 2023; 16:145. [PMID: 37365635 DOI: 10.1186/s12920-023-01569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Carbamoyl phosphate synthetase I defect (CPS1D) is a rare disease with clinical case reports mainly in early neonates or adults, with few reports of first onset in late neonatal to childhood. We studied the clinical and genotypic characteristics of children with childhood onset CPS1D caused by two loci mutations (one of these is a rarely reported non-frame shift mutation) in the CPS1. CASE PRESENTATION We present a rare case of adolescent-onset CPS1D that had been misdiagnosed due to atypical clinical features, and further investigations revealed severe hyperammonemia (287µmol/L; reference range 11.2 ~ 48.2umol/L). MRI of the brain showed diffuse white matter lesions. Blood genetic metabolic screening showed elevated blood alanine (757.06umol/L; reference range 148.8 ~ 739.74umol/L) and decreased blood citrulline (4.26umol/L; reference range 5.45 ~ 36.77umol/L). Urine metabolic screening showed normal whey acids and uracil. Whole-exome sequencing revealed compound heterozygous mutations in the CPS1, a missense mutation (c.1145 C > T) and an unreported de novo non-frame shift mutation (c.4080_c.4091delAGGCATCCTGAT), respectively, which provided a clinical diagnosis. CONCLUSION A comprehensive description of the clinical and genetic features of this patient, who has a rare age of onset and a relatively atypical clinical presentation, will facilitate the early diagnosis and management of this type of late onset CPS1D and reduce misdiagnosis, thus helping to reduce mortality and improve prognosis. It also provides a preliminary understanding of the relationship between genotype and phenotype, based on a summary of previous studies, which reminds us that it may help to explore the pathogenesis of the disease and contribute to genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Shangyu Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | | | - Xiaoqi Zhu
- Nanjing Medical University, Nanjing, China
| | - Tingting Huang
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Haifeng Xu
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Guohuan Ying
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Hao Qian
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Wenxin Lin
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Yiehen Tung
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Kaleem Ullah Khan
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Hu Guo
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Haiying Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China
| | - Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Chen Y, Yuan P, Gu L, Bai J, Ouyang S, Sun T, Liu K, Wang Z, Liu C. Constructing a seventeen-gene signature model for non-obstructive azoospermia based on integrated transcriptome analyses and WGCNA. Reprod Biol Endocrinol 2023; 21:30. [PMID: 36945018 PMCID: PMC10029246 DOI: 10.1186/s12958-023-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) affects approximately 1% of the male population worldwide. The underlying mechanism and gene transcription remain unclear. This study aims to explore the potential pathogenesis for the detection and management of NOA. METHODS Based on four microarray datasets from the Gene Expression Omnibus database, integrated analysis and weighted correlation network analysis (WGCNA) were used to obtain the intersected common differentially expressed genes (DESs). Differential signaling pathways were identified via GO and GSVA-KEGG analyses. We constructed a seventeen-gene signature model using least absolute shrinkage and selection operation (LASSO) regression, and validated its efficacy in another two GEO datasets. Three patients with NOA and three patients with obstructive azoospermia were recruited. The mRNA levels of seven key genes were measured in testicular samples, and the gene expression profile was evaluated in the Human Protein Atlas (HPA) database. RESULTS In total, 388 upregulated and 795 downregulated common DEGs were identified between the NOA and control groups. ATPase activity, tubulin binding, microtubule binding, and metabolism- and immune-associated signaling pathways were significantly enriched. A seventeen-gene signature predictive model was constructed, and receiver operating characteristic (ROC) analysis showed that the area under the curve (AUC) values were 1.000 (training group), 0.901 (testing group), and 0.940 (validation set). The AUCs of seven key genes (REC8, CPS1, DHX57, RRS1, GSTA4, SI, and COX7B) were all > 0.8 in both the testing group and the validation set. The qRT-PCR results showed that consistent with the sequencing data, the mRNA levels of RRS1, GSTA4, and COX7B were upregulated, while CPS1, DHX57, and SI were downregulated in NOA. Four genes (CPS1, DHX57, RRS1, and SI) showed significant differences. Expression data from the HPA database showed the localization characteristics and trajectories of seven key genes in spermatogenic cells, Sertoli cells, and Leydig cells. CONCLUSIONS Our findings suggest a novel seventeen-gene signature model with a favorable predictive power, and identify seven key genes with potential as NOA-associated marker genes. Our study provides a new perspective for exploring the underlying pathological mechanism in male infertility.
Collapse
Affiliation(s)
- Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Penghui Yuan
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Longjie Gu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Song Ouyang
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Chang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
3
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
4
|
Wang H, Zhong L, Dong Y, Meng L, Ji C, Luo H, Fu M, Qi Z, Mi L. Whole-genome resequencing reveals domestication and signatures of selection in Ujimqin, Sunit, and Wu Ranke Mongolian sheep breeds. Anim Biosci 2022; 35:1303-1313. [PMID: 35507861 PMCID: PMC9449395 DOI: 10.5713/ab.21.0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: The current study aimed to perform whole-genome resequencing of Chinese indigenous Mongolian sheep breeds including Ujimqin, Sunit, and Wu Ranke sheep breeds (UJMQ, SNT, WRK) and deeply analyze genetic variation, population structure, domestication, and selection for domestication traits among these Mongolian sheep breeds.Methods: Blood samples were collected from a total of 60 individuals comprising 20 WRK, 20 UJMQ, and 20 SNT. For genome sequencing, about 1.5 μg of genomic DNA was used for library construction with an insert size of about 350 bp. Pair-end sequencing were performed on Illumina NovaSeq platform, with the read length of 150 bp at each end. We then investigated the domestication and signatures of selection in these sheep breeds.Results: According to the population and demographic analyses, WRK and SNT populations were very similar, which were different from UJMQ populations. Genome wide association study identified 468 and 779 significant loci from SNT vs UJMQ, and UJMQ vs WRK, respectively. However, only 3 loci were identified from SNT vs WRK. Genomic comparison and selective sweep analysis among these sheep breeds suggested that genes associated with regulation of secretion, metabolic pathways including estrogen metabolism and amino acid metabolism, and neuron development have undergone strong selection during domestication.Conclusion: Our findings will facilitate the understanding of Chinese indigenous Mongolian sheep breeds domestication and selection for complex traits and provide a valuable genomic resource for future studies of sheep and other domestic animal breeding.
Collapse
|
5
|
Xia T, Wan Y, Li Y, Zhang J. Highly Stable Lanthanide Metal-Organic Framework as an Internal Calibrated Luminescent Sensor for Glutamic Acid, a Neuropathy Biomarker. Inorg Chem 2020; 59:8809-8817. [PMID: 32501688 DOI: 10.1021/acs.inorgchem.0c00544] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutamic acid (Glu) is the most abundant excitatory neurotransmitter in the central nervous system, and an elevated level of Glu may indicate some neuropathological diseases. Herein, three isomorphic microporous lanthanide metal-organic frameworks (MOFs) [(CH3)2NH2]2[Ln6(μ3-OH)8(BDC-OH)6(H2O)6]·(solv)x (ZJU-168; ZJU = Zhejiang University, H2BDC-OH = 2-hydroxyterephthalic acid, Ln = Eu, Tb, Gd) were designed for the detection of Glu. ZJU-168(Eu) and ZJU-168(Tb) suspensions simultaneously produce the characteristic emission bands of both lanthanide ions and ligands. When ZJU-168(Eu) and ZJU-168(Tb) suspensions exposed to Glu, the fluorescence intensity of ligands increases while the emission of lanthanide ions is almost unchanged. By utilizing the emission of ligands as the detected signal and the emission of lanthanide ions as the internal reference, an internal calibrated fluorescence sensor for Glu was obtained. There is a good linear relationship between fluorescence intensity ratio and Glu concentration in a wide range with the detection limit of 3.6 μM for ZJU-168(Tb) and 4.3 μM for ZJU-168(Eu). Major compounds present in blood plasma have no interference for the detection of Glu. Furthermore, a convenient analytical device based on a one-to-two logic gate was constructed for monitoring Glu. These establish ZJU-168(Tb) as a potential turn-on, ratiometric, and colorimetric fluorescent sensor for practical detection of Glu.
Collapse
Affiliation(s)
- Tifeng Xia
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, P. R. China.,State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yating Wan
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanping Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jun Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|