1
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
2
|
Bouchoucha S, Boukhebti H, Oulmi A, Mouhamadi Y, Chaker AN. Chemical composition and antimicrobial activity of essential oils of two wild olive subspecies Olea europaea L.var. sylvestris and the endemic olive Olea europaea subsp. lapperinie from Algeria. Nat Prod Res 2023:1-8. [PMID: 37967031 DOI: 10.1080/14786419.2023.2280818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Two wild olive subspecies are fixed in this research: Olea europaea L.var. sylvestris and Olea europaea subsp. laperrinei despite its ecological value, the chemical composition of subsp. laperrinei oil remains unknown. The samples were harvested from the different geographical area. Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-flame-ionization detection (GC-FID) analysis of Olea europaea L. var. sylvestris allowed the identification of 29 compounds oil with Nonanal (11.82%), theaspiranea A (9.81%), 3-hexen-1-ol,benzoate(9.31%) as a major constituents, while in the subspecies of the Saharan region 31 compounds were separated, where α-pinene (16%), β-Ocimene (12.82%), dl-Limonene (8.20%) were the main components. The results of the disc diffusion method showed that the two volatile oils have efficient antibacterial activity but, subsp. laperrinei essential oil has a higher range of inhibition, in which P. aeruginosa and B. subtilis showed an extreme sensitivity, while the K. pneumoniae bacterium shows a great resistance to the two essential oils.
Collapse
Affiliation(s)
- Sarra Bouchoucha
- Department Plant Biology and Ecology, Faculty of Natural and Life Sciences, Laboratory of Natural Resources Valorization, Ferhat Abbas Sétif 1 University, Sétif, Algeria
| | - Habiba Boukhebti
- Department Plant Biology and Ecology, Faculty of Natural and Life Sciences, Laboratory of Natural Resources Valorization, Ferhat Abbas Sétif 1 University, Sétif, Algeria
| | - Abdemalek Oulmi
- Department Plant Biology and Ecology, Faculty of Natural and Life Sciences, Laboratory of Natural Resources Valorization, Ferhat Abbas Sétif 1 University, Sétif, Algeria
| | - Yacine Mouhamadi
- Department Plant Biology and Ecology, Faculty of Natural and Life Sciences, Laboratory of Natural Resources Valorization, Ferhat Abbas Sétif 1 University, Sétif, Algeria
| | - Adel Nadjib Chaker
- Department Plant Biology and Ecology, Faculty of Natural and Life Sciences, Laboratory of Natural Resources Valorization, Ferhat Abbas Sétif 1 University, Sétif, Algeria
| |
Collapse
|
3
|
Asmus JJ, Toplis B, Roets F, Botha A. Predicting interactions of the frass-associated yeast Hyphopichia heimii with Olea europaea subsp. cuspidata and twig-boring bark beetles. Folia Microbiol (Praha) 2022; 67:899-911. [PMID: 35767213 DOI: 10.1007/s12223-022-00985-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
Bark beetles are destructive insect pests known to form symbioses with different fungal taxa, including yeasts. The aim of this study was to (1) determine the prevalence of the rare yeast Hyphopichia heimii in bark beetle frass from wild olive trees in South Africa and to (2) predict the potential interaction of this yeast with trees and bark beetles. Twenty-eight culturable yeast species were isolated from frass in 35 bark beetle galleries, including representatives of H. heimii from nine samples. Physiological characterization of H. heimii isolates revealed that none was able to degrade complex polymers present in hemicellulose; however, all were able to assimilate sucrose and cellobiose, sugars associated with an arboreal habitat. All isolates were able to produce the auxin indole acetic acid, indicative of a potential symbiosis with the tree. Sterol analysis revealed that the isolates possessed ergosterol quantities ranging from 3.644 ± 0.119 to 13.920 ± 1.230 mg/g dry cell weight, which suggested that H. heimii could serve as a source of sterols in bark beetle diets, as is known for other bark beetle-associated fungi. In addition, gas chromatography-mass spectrometry demonstrated that at least one of the isolates, Hyphopichia heimii CAB 1614, was able to convert the insect pheromone cis-verbenol to the anti-aggregation pheromone verbenone. This indicated that H. heimii could potentially influence beetle behaviour. These results support the contention of a tripartite symbiosis between H. heimii, olive trees, and bark beetles.
Collapse
Affiliation(s)
- Justin J Asmus
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Barbra Toplis
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Jurišić Grubešić R, Nazlić M, Miletić T, Vuko E, Vuletić N, Ljubenkov I, Dunkić V. Antioxidant Capacity of Free Volatile Compounds from Olea europaea L. cv. Oblica Leaves Depending on the Vegetation Stage. Antioxidants (Basel) 2021; 10:1832. [PMID: 34829702 PMCID: PMC8615238 DOI: 10.3390/antiox10111832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Previous research on specialized metabolites of olive leaves has focused on the phenolic components and their biological role. The research in this article focuses on the metabolites that form free volatile compounds (FVCs). The composition of FVCs is divided into compounds isolated in the oil phase (essential oils; EO) and in the aqueous phase (hydrosols; Hy) from leaves of Olea europaea L. cultivar Oblica. Plant material was collected from the same olive tree over a six-month period, from December to May, and analyzed by gas chromatography-mass spectrometry (GC-MS). The compounds β-caryophyllene, α-humulene, allo-aromadendrene, docosane, hexadecanoic acid and oleic acid were identified in all EO study periods. In the Hy in all studied periods, the major compounds are α-pinene, β-ionone, myristicin, docosane, 1-hexanol, oleic acid and (E)-β-damascenone. The differences in the qualitative composition of FVC are directly related to the phenological development of the leaves. Antioxidant capacity of the EOs and hydrosols was measured with two methods, ORAC and DPPH. Hydrosol extracts showed higher capacity than the EOs in all methods.
Collapse
Affiliation(s)
| | - Marija Nazlić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (E.V.); (N.V.); (I.L.)
| | - Tina Miletić
- Pharmacy “Vaše Zdravlje”, Put Kotlara 50, Zadar, HR-23000 Zadar, Croatia;
| | - Elma Vuko
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (E.V.); (N.V.); (I.L.)
| | - Nenad Vuletić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (E.V.); (N.V.); (I.L.)
| | - Ivica Ljubenkov
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (E.V.); (N.V.); (I.L.)
| | - Valerija Dunkić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia; (M.N.); (E.V.); (N.V.); (I.L.)
| |
Collapse
|