1
|
de Oliveira BCD, Shiburah ME, Assis LHC, Fontes VS, Bisetegn H, Passos ADO, de Oliveira LS, Alves CDS, Ernst E, Martienssen R, Gallo-Francisco PH, Giorgio S, Batista MM, Soeiro MDNC, Menna-Barreto RFS, Aoki JI, Coelho AC, Cano MIN. Leishmania major telomerase RNA knockout: From altered cell proliferation to decreased parasite infectivity. Int J Biol Macromol 2024; 279:135150. [PMID: 39218181 DOI: 10.1016/j.ijbiomac.2024.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on the biological impacts of deleting the telomerase RNA from Leishmania major (LeishTER), a parasite responsible for causing leishmaniases, for which no effective treatment or prevention is available. TER is a critical player in the telomerase ribonucleoprotein complex, containing the template sequence copied by the reverse transcriptase component during telomere elongation. The success of knocking out both LeishTER alleles was confirmed, and no off-targets were detected. LmTER-/- cells share similar characteristics with other TER-depleted eukaryotes, such as altered growth patterns and partial G0/G1 cell cycle arrest in early passages, telomere shortening, and elevated TERRA expression. They also exhibit increased γH2A phosphorylation, suggesting that the loss of LeishTER induces DNA damage signaling. Moreover, pro-survival autophagic signals and mitochondrion alterations were shown without any detectable plasma membrane modifications. LmTER-/- retained the ability to transform into metacyclics, but their infectivity capacity was compromised. Furthermore, the overexpression of LeishTER was also deleterious, inducing a dominant negative effect that led to telomere shortening and growth impairments. These findings highlight TER's vital role in parasite homeostasis, opening discussions about its potential as a drug target candidate against Leishmania.
Collapse
Affiliation(s)
- Beatriz Cristina Dias de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Mark Ewusi Shiburah
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Animal Research Institute, Council for Scientific and Industrial Research (CSIR-ARI), Accra, Ghana
| | - Luiz Henrique Castro Assis
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Veronica Silva Fontes
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Habtye Bisetegn
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Arthur de Oliveira Passos
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Leilane S de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | - Evan Ernst
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rob Martienssen
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Selma Giorgio
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Marcos Meuser Batista
- Cellular Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Juliana Ide Aoki
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Adriano Cappellazzo Coelho
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Inai Y, Izawa T, Kamei T, Fujiwara S, Tanaka M, Yamate J, Kuwamura M. Difference in the Mechanism of Iron Overload-Enhanced Acute Hepatotoxicity Induced by Thioacetamide and Carbon Tetrachloride in Rats. Toxicol Pathol 2024; 52:55-66. [PMID: 38528719 DOI: 10.1177/01926233241235623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.
Collapse
Affiliation(s)
- Yohei Inai
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Tomomi Kamei
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Sho Fujiwara
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
3
|
Peng Q, Zhou M, Zuo S, Liu Y, Li X, Yang Y, He Q, Yu X, Zhou J, He Z, He Q. Nuclear Factor Related to KappaB Binding Protein ( NFRKB) Is a Telomere-Associated Protein and Involved in Liver Cancer Development. DNA Cell Biol 2021; 40:1298-1307. [PMID: 34591601 DOI: 10.1089/dna.2021.0486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a homologous recombination-based telomere maintenance mechanism activated in 10-15% of human cancers. Although significant progress has been made, the key regulators of the ALT pathway and its role in cancer development remain elusive. Bioinformatics methods were used to predict novel telomere-associated proteins (TAPs) by analysis of large-scale ChIP-Seq data. Immunostaining and fluorescence in situ hybridization experiments were applied to detect the subcellular location of target genes and telomeres. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) were used to examine the expression of targeting genes. Overall survival (OS) analyses were used to evaluate the relationship between gene expression and survival time; immunohistochemistry was used to detect the distribution of target genes in liver cancer tissues. We found that nuclear factor related to kappaB binding protein (NFRKB), a metazoan-specific subunit of the INO80 complex, can associate with telomeres in human ALT cells. Loss of NFRKB induces dysfunction of telomeres and less PML bodies in U2OS cells. In addition, NFRKB is low/moderately expressed in cytoplasm of normal hepatocytes but heavily accumulating in the nucleus of liver cancer cells. Finally, the high expression of NFRKB is associated with short OS time and poor prognosis. NFRKB is a TAP and protects telomeres from DNA damage in ALT cells. It is highly expressed in hepatocellular carcinoma (HCC) cells and predicts a poor prognosis. NFRKB may be a promising prognostic biomarker for the treatment of HCC in the future.
Collapse
Affiliation(s)
- Qiyao Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Mingqing Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Shanru Zuo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yucong Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Quanze He
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xing Yu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
4
|
Vania L, Morris G, Ferreira E, Weiss SFT. Knock-down of LRP/LR influences signalling pathways in late-stage colorectal carcinoma cells. BMC Cancer 2021; 21:392. [PMID: 33836696 PMCID: PMC8035741 DOI: 10.1186/s12885-021-08081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background The 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in several tumourigenic-promoting processes including cellular viability maintenance and apoptotic evasion. Thus, the aim of this study was to assess the molecular mechanism of LRP/LR on apoptotic pathways in late stage (DLD-1) colorectal cancer cells upon siRNA-mediated down-regulation of LRP/LR. Methods siRNAs were used to down-regulate the expression of LRP/LR in DLD-1 cells which was assessed using western blotting and qPCR. To evaluate the mechanistic role of LRP/LR, proteomic analysis of pathways involved in proliferation and apoptosis were investigated. The data from the study was analysed using a one-way ANOVA, followed by a two-tailed student’s t-test with a confidence interval of 95%. Results Here we show that knock-down of LRP/LR led to significant changes in the proteome of DLD-1 cells, exposing new roles of the protein. Moreover, analysis showed that LRP/LR may alter components of the MAPK, p53-apoptotic and autophagic signalling pathways to aid colorectal cancer cells in continuous growth and survival. Knock-down of LRP/LR also resulted in significant decreases in telomerase activity and telomerase-related proteins in the DLD-1 cells. Conclusions These findings show that LRP/LR is critically implicated in apoptosis and cell viability maintenance and suggest that siRNA-mediated knock-down of LRP/LR may be a possible therapeutic strategy for the treatment of colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08081-3.
Collapse
Affiliation(s)
- Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, Republic of South Africa.
| |
Collapse
|
5
|
Piekna-Przybylska D, Nagumotu K, Reid DM, Maggirwar SB. HIV-1 infection renders brain vascular pericytes susceptible to the extracellular glutamate. J Neurovirol 2018; 25:114-126. [PMID: 30402824 DOI: 10.1007/s13365-018-0693-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Reduced pericytes' coverage of endothelium in the brain is one of the structural changes leading to breach of the blood-brain barrier during HIV infection. We previously showed in central memory T (TCM) cells that HIV latency increases cellular susceptibility to DNA damage. In this study, we investigated susceptibility of primary brain pericytes infected with HIV-1 to DNA damage in response to glutamate and TNF-α, both known to induce neuronal death during chronic inflammatory conditions. To infect pericytes, we used a single-cycle HIV-1 pseudotyped with VSV-G envelope glycoprotein and maintained the cultures until latency was established. Our data indicate that pericytes silence HIV-1 expression at similar rate compared to primary TCM cells. TNF-α and IL-1β caused partial reactivation of the virus suggesting that progression of disease and neuroinflammation might facilitate virus reactivation from latency. Significant increases in the level of γH2AX, which reflect DNA damage, were observed in infected cultures exposed to TNF-α and glutamate at day 2 post-infection. Glutamate, an excitatory neurologic stimuli, also caused increases in the γH2AX level in latently infected pericytes, whereas PARP and DNA-PK inhibitors caused reductions in cell population suggesting that HIV-1 latency affects repairs of single- and double-strand DNA breaks. For comparison, we also analyzed latently infected astrocytes and determined that DNA damage response in astrocytes is less affected by HIV-1. In conclusion, our results indicate that productive infection and HIV-1 latency in pericytes interfere with DNA damage response, rendering them vulnerable to the agents that are characteristic of chronic neuroinflammatory disease conditions.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| | - Kavyasri Nagumotu
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Danielle M Reid
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
6
|
Zarghami N, Murrell DH, Jensen MD, Dick FA, Chambers AF, Foster PJ, Wong E. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response. Radiat Oncol 2018; 13:104. [PMID: 29859114 PMCID: PMC5984731 DOI: 10.1186/s13014-018-1028-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Background Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases’ responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Methods Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. Results In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Conclusions Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.
Collapse
Affiliation(s)
- Niloufar Zarghami
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Donna H Murrell
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Michael D Jensen
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Frederick A Dick
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Ann F Chambers
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Eugene Wong
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada. .,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada. .,Department of Oncology, University of Western Ontario, London, Ontario, Canada. .,Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
7
|
Piekna-Przybylska D, Sharma G, Maggirwar SB, Bambara RA. Deficiency in DNA damage response, a new characteristic of cells infected with latent HIV-1. Cell Cycle 2017; 16:968-978. [PMID: 28388353 DOI: 10.1080/15384101.2017.1312225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs). We found that phosphorylation of histone H2AX on Ser139 (gamma-H2AX), a biomarker of DSBs, and phosphorylation of ATM at Ser1981, Chk2 at Thr68, and p53 at Ser15, part of signaling pathways associated with DSBs, are elevated in these cells. These results indicate a DDR defect even though the virus is latent. DDR-inducing agents, specifically high doses of nucleoside RT inhibitors (NRTIs), caused greater increases in gamma-H2AX levels in latently infected cells. Additionally, latently infected cells are more susceptible to long-term exposure to G-quadruplex stabilizing agents, and this effect is enhanced when the agent is combined with an inhibitor targeting DNA-PK, which is crucial for DSB repair and telomere maintenance. Moreover, exposing these cells to the cancer drug etoposide resulted in formation of DSBs at a higher rate than in un-infected cells. Similar effects of etoposide were also observed in population of primary memory T cells infected with latent HIV-1. Sensitivity to these agents highlights a unique vulnerability of latently infected cells, a new feature that could potentially be used in developing therapies to eliminate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Gaurav Sharma
- b Department of Electrical and Computer Engineering , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| |
Collapse
|
8
|
Ebert MA, Dhal B, Prunster J, McLaren S, Zeps N, House M, Reniers B, Verhaegen F, Corica T, Saunders C, Joseph DJ. Theoretical versus Ex Vivo Assessment of Radiation Damage Repair: An Investigation in Normal Breast Tissue. Radiat Res 2016; 185:393-401. [PMID: 27023258 DOI: 10.1667/rr14235.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In vivo validation of models of DNA damage repair will enable their use for optimizing clinical radiotherapy. In this study, a theoretical assessment was made of DNA double-strand break (DSB) induction in normal breast tissue after intraoperative radiation therapy (IORT), which is now an accepted form of adjuvant radiotherapy for selected patients with early breast cancer. DSB rates and relative biological effectiveness (RBE) were calculated as a function of dose, radiation quality and dose rate, each varying based on the applicator size used during IORT. The spectra of primary electrons in breast tissue adjacent to each applicator were calculated using measured X-ray spectra and Monte Carlo methods, and were used to inform a Monte Carlo damage simulation code. In the absence of repair, asymptotic RBE values (relative to (60)Co) were approximately 1.5. Beam-quality changes led to only minor variations in RBE among applicators, though differences in dose rate and overall dose delivery time led to larger variations and a rapid decrease in RBE. An experimental assessment of DSB induction was performed ex vivo using pre- and postirradiation tissue samples from patients receiving breast intraoperative radiation therapy. Relative DSB rates were assessed via γ-H2AX immunohistochemistry using proportional staining. Maximum-likelihood parameter estimation yielded a DSB repair halftime of 25.9 min (95% CI, 21.5-30.4 min), although the resulting model was not statistically distinguishable from one where there was no change in DSB yield among patients. Although the model yielded an in vivo repair halftime of the order of previous estimates for in vitro repair halftimes, we cannot conclude that it is valid in this context. This study highlights some of the uncertainties inherent in population analysis of ex vivo samples, and of the quantitative limitations of immunohistochemistry for assessment of DSB repair.
Collapse
Affiliation(s)
- Martin A Ebert
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,b Physics
| | | | - Janelle Prunster
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of
| | - Sally McLaren
- e St. John of God Subiaco Hospital, Western Australia
| | - Nikolajs Zeps
- c Surgery and.,e St. John of God Subiaco Hospital, Western Australia
| | | | - Brigitte Reniers
- f Research Group NuTeC, CMK, Hasselt University, Diepenbeek, Belgium; and
| | | | - Tammy Corica
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,d Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia
| | | | - David J Joseph
- a Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia; Schools of.,c Surgery and
| |
Collapse
|
9
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
10
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
11
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
12
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
13
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
14
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438-- or] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
15
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:360438. [PMID: 24999379 PMCID: PMC4066722 DOI: 10.1155/2014/360438] [Citation(s) in RCA: 3100] [Impact Index Per Article: 310.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
16
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (select 9530 from(select count(*),concat(0x716b6b7171,(select (elt(9530=9530,1))),0x7178627171,floor(rand(0)*2))x from information_schema.plugins group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
17
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
18
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
19
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
20
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
21
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and 3210=8912#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
22
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (select 2*(if((select * from (select concat(0x716b6b7171,(select (elt(2002=2002,1))),0x7178627171,0x78))s), 8446744073709551610, 8446744073709551610)))# uwfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
23
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
24
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or (select 4688 from(select count(*),concat(0x716b6b7171,(select (elt(4688=4688,1))),0x7178627171,floor(rand(0)*2))x from information_schema.plugins group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
25
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
26
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and extractvalue(4484,concat(0x5c,0x716b6b7171,(select (elt(4484=4484,1))),0x7178627171))-- udox] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
27
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or extractvalue(7511,concat(0x5c,0x716b6b7171,(select (elt(7511=7511,1))),0x7178627171))-- pyig] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
28
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
29
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
30
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or exp(~(select * from (select concat(0x716b6b7171,(select (elt(1818=1818,1))),0x7178627171,0x78))x))-- ztnz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
31
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
32
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
33
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 having 9701=9701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
34
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 having 9701=9701# mqyy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
35
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and elt(3654=3654,8670)# aoth] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
36
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or not 1435=3375# wlka] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
37
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
38
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 where 2730=2730 and updatexml(1176,concat(0x2e,0x716b6b7171,(select (elt(1176=1176,1))),0x7178627171),7256)-- jxhy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
39
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (8866=8866)*8274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
40
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and json_keys((select convert((select concat(0x716b6b7171,(select (elt(3949=3949,1))),0x7178627171)) using utf8)))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
41
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 where 3439=3439 and 9869=(select (case when (9869=9586) then 9869 else (select 9586 union select 6836) end))-- cilh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
42
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
43
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
44
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or updatexml(6584,concat(0x2e,0x716b6b7171,(select (elt(6584=6584,1))),0x7178627171),2580)# jmtd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
45
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (select 2*(if((select * from (select concat(0x716b6b7171,(select (elt(2002=2002,1))),0x7178627171,0x78))s), 8446744073709551610, 8446744073709551610)))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
46
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and exp(~(select * from (select concat(0x716b6b7171,(select (elt(6306=6306,1))),0x7178627171,0x78))x))# lbym] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
47
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (select (case when (3855=2780) then null else ctxsys.drithsx.sn(1,3855) end) from dual) is null# zsmx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
48
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
49
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
50
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|