1
|
Zhao C, Guo H, Hou Y, Lei T, Wei D, Zhao Y. Multiple Roles of the Stress Sensor GCN2 in Immune Cells. Int J Mol Sci 2023; 24:ijms24054285. [PMID: 36901714 PMCID: PMC10002013 DOI: 10.3390/ijms24054285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302
| |
Collapse
|
2
|
Surka C, Jin L, Mbong N, Lu CC, Jang IS, Rychak E, Mendy D, Clayton T, Tindall E, Hsu C, Fontanillo C, Tran E, Contreras A, Ng SWK, Matyskiela M, Wang K, Chamberlain P, Cathers B, Carmichael J, Hansen J, Wang JCY, Minden MD, Fan J, Pierce DW, Pourdehnad M, Rolfe M, Lopez-Girona A, Dick JE, Lu G. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021; 137:661-677. [PMID: 33197925 PMCID: PMC8215192 DOI: 10.1182/blood.2020008676] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).
Collapse
Affiliation(s)
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | - Stanley W K Ng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Kai Wang
- Bristol-Myers Squibb, San Diego, CA
| | | | | | | | | | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Jinhong Fan
- Bristol-Myers Squibb, San Francisco, CA; and
| | | | | | | | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gang Lu
- Bristol-Myers Squibb, San Diego, CA
| |
Collapse
|
3
|
Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends Cancer 2020; 6:960-973. [PMID: 32540455 DOI: 10.1016/j.trecan.2020.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Understanding genetic and epigenetic changes that underlie abnormal proliferation of hematopoietic stem and progenitor cells is critical for development of new approaches to monitor and treat leukemia. The unfolded protein response (UPR) is a conserved adaptive signaling pathway that governs protein folding, secretion, and energy production and serves to maintain protein homeostasis in various cellular compartments. Deregulated UPR signaling, which often occurs in hematopoietic stem cells and leukemia, defines the degree of cellular toxicity and perturbs protein homeostasis, and at the same time, offers a novel therapeutic target. Here, we review current knowledge related to altered UPR signaling in leukemia and highlight possible strategies for exploiting the UPR as treatment for this disease.
Collapse
Affiliation(s)
- Ali Khateb
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Pu Y, Wu D, Lu X, Yang L. Effects of GCN2/eIF2α on myocardial ischemia/hypoxia reperfusion and myocardial cells injury. Am J Transl Res 2019; 11:5586-5598. [PMID: 31632531 PMCID: PMC6789277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Myocardial ischemia/hypoxia-reperfusion injury is a common and severe cardiovascular disorder. General control non-derepressible 2 (GCN2) plays an important role in the role of cardiomyocyte glucose metabolism. Therefore, our study focused on the expression of GCN2/eIF2α in myocardial ischemia/hypoxia-reperfusion injury and its mechanism of myocardial cell injury. In the volunteers and patients with myocardial ischemia and hypoxia- reperfusion, the expression of GCN2 and eIF2α on serum were detected by RT-qPCR. The GCN2, eIF2α interference and GCN2 overexpression plasmids were constructed and transfected into cells. Then, the level of TNF-α, IL-1β, IL-6, IFN-γ were detected by ELISA and the level of ROS, MDA, LDH and SOD were measured by the corresponding kits, respectively. Besides, the expression of GCN2/eIF2 signaling pathway (p-eIF2α, ATF4, CHOP, UCP2 and eIF2α) and apoptosis-related proteins (Bax, Bcl-2 and cleaved caspase3) was detected by western blot. Flow cytometry was performed to value cell apoptosis. The expression of GCN2 is increased in oxygen-glucose deprivation/reoxygenation (OGD/R) model cells and GCN2 interference reduces the inflammation and oxidative stress in H9C2 cells after OGD/R. GCN2 interference reduced the level of apoptosis in OGD/R model cells and inhibited the expression of GCN2/eIF2α signaling pathway. We found that eIF2α interference could offset the effects of GCN2 overexpression on oxidative stress and apoptosis in H9C2 cells, and verified that GCN2 is produced by eIF2α phosphorylation. Together, GCN2/eIF2α signaling pathway plays an important role in myocardial ischemia/hypoxia-reperfusion injury, which could provide a new idea for the treatment of myocardial infarction on clinical.
Collapse
Affiliation(s)
- Yan Pu
- Department of Emergency Centre, Hanzhong Central HospitalHanzhong 723000, Shaanxi, China
| | - Dong Wu
- Department of Physical Emergency, Shaanxi Provincial People’s HospitalXi’an 710068, Shaanxi, China
| | - Xiaoe Lu
- Department of Critical Medicine, Shaanxi Provincial People’s HospitalXi’an 710068, Shaanxi, China
| | - Linjun Yang
- Department of Emergency, Hanzhong People’s HospitalHanzhong 723000, Shaanxi, China
| |
Collapse
|
5
|
Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: A Kinase to Remember. Front Mol Neurosci 2019; 11:480. [PMID: 30686999 PMCID: PMC6333748 DOI: 10.3389/fnmol.2018.00480] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Marcelo Ehrlich
- Laboratory of Intracellular Trafficking and Signaling, School of Molecular Cell Biology & Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kobi Rosenblum
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Triazolo[4,5 -d]pyrimidines as Validated General Control Nonderepressible 2 (GCN2) Protein Kinase Inhibitors Reduce Growth of Leukemia Cells. Comput Struct Biotechnol J 2018; 16:350-360. [PMID: 30364637 PMCID: PMC6197744 DOI: 10.1016/j.csbj.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 01/05/2023] Open
Abstract
Cellular stress signals activate adaptive signaling pathways of the mammalian integrated stress response (ISR), of which the unfolded protein response (UPR) is a subset. These pathways converge at the phosporylation of eIF2α. Drug-like, potent and selective chemical inhibitors (valid chemical probes) targeting major ISR kinases have been previously identified, with the exception of GCN2. We synthesized and evaluated a series of GCN2 inhibitors based on a triazolo[4,5-d]pyrimidine scaffold. Several compounds potently inhibited GCN2 in vitro and displayed good selectivity over the related kinases PERK, HRI, and IRE1. The compounds inhibited phosporylation of eIF2α in HEK293T cells with an IC50 < 150 nM, validating them as chemical probes for cellular studies. These probes were screened against the National Cancer Institute NCI-60 human cancer cell line panel. Uniform growth inhibition was observed in the leukemia group of cell lines. Growth inhibition in the most sensitive cell lines coincided with high GCN2 mRNA expression levels. Oncomine analysis revealed high GCN2 expression accompanied by lower asparagine synthetase (ASNS) expression in patient-derived acute lymphoblastic leukemias with B-Cell origins (B-ALL) as well. Notably, asparaginase, which depletes amino acids and triggers GCN2 activity, is a licensed, first-line B-ALL treatment. Thus, we hypothesize that leukemias exhibiting high GCN2 expression and low ASNS expression may be susceptible to pharmacologic GCN2 inhibition.
Collapse
|
7
|
Wang Y, Lei T, Yuan J, Wu Y, Shen X, Gao J, Feng W, Lu Z. GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Redox Biol 2018; 17:25-34. [PMID: 29660505 PMCID: PMC6006681 DOI: 10.1016/j.redox.2018.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/17/2023] Open
Abstract
The clinical use of doxorubicin for cancer therapy is limited by its cardiotoxicity, which involves cardiomyocyte apoptosis and oxidative stress. Previously, we showed that general control nonderepressible 2 (GCN2), an eukaryotic initiation factor 2α (eIF2α) kinase, impairs the ventricular adaptation to chronic pressure overload by affecting cardiomyocyte apoptosis. However, the impact of GCN2 on Dox-induced cardiotoxicity has not been investigated. In the present study, we treated wild type (WT) and Gcn2−/− mice with four intraperitoneal injections (5 mg/kg/week) to induce cardiomyopathy. After Dox treatment, Gcn2−/− mice developed less contractile dysfunction, myocardial fibrosis, apoptosis, and oxidative stress compared with WT mice. In the hearts of the Dox-treated mice, GCN2 deficiency attenuated eIF2α phosphorylation and induction of its downstream targets, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and preserved the expression of anti-apoptotic factor Bcl-2 and mitochondrial uncoupling protein-2(UCP2). Furthermore, we found that GCN2 knockdown attenuated, whereas GCN2 overexpression exacerbated, Dox-induced cell death, oxidative stress and reduction of Bcl-2 and UCP2 expression through the eIF2α-CHOP-dependent pathway in H9C2 cells. Collectively, our data provide solid evidence that GCN2 has a marked effect on Dox induced myocardial apoptosis and oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in cardiomyocyte may provide a novel approach to attenuate Dox-related cardiotoxicity. GCN2 deficiency ameliorates doxorubicin-induced cardiac dysfunction. GCN2 promotes doxorubicin-induced cardiomyocyte apoptosis and oxidative stress. GCN2 decreases Bcl-2 and UCP2 expression via a CHOP dependent manner. Knockdown of UCP2 exacerbated doxorubicin-induced cell death and oxidative stress.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Tong Lei
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Yongguang Wu
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China.
| |
Collapse
|
8
|
Koromilas AE. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:871-80. [PMID: 25497381 DOI: 10.1016/j.bbagrm.2014.12.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 01/12/2023]
Abstract
Cells respond to various forms of stress by activating anti-proliferative pathways, which allow them to correct the damage caused by stress before re-entering proliferation. If the damage, however, is beyond repair, stressed cells are eliminated from the host by undergoing death. The balance between cell survival and death is essential for cancer formation and is determined by several key pathways that impact on different stages of gene expression. In recent years, it has become evident that phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2 at serine 51 (eIF2αS51P) is an important determinant of cell fate in response to stress. Induction of eIF2αS51P is mediated by a family of four kinases namely, HRI, PKR, PERK and GCN2, each of which responds to distinct forms of stress. Increased eIF2αS51P results in a global inhibition of protein synthesis but at the same time enhances the translation of select mRNAs encoding for proteins that control cell adaptation to stress. Short-term induction of eIF2αS51P has been associated with cell survival whereas long-term induction with cell death. Studies in mouse and human models of cancer have provided compelling evidence that eIF2αS51P plays an essential role in stress-induced tumorigenesis. Increased eIF2αS51P exhibits cell autonomous as well as immune regulatory effects, which can influence tumor growth and the efficacy of anti-tumor therapies. The findings suggest that eIF2αS51P may be of prognostic value and a suitable target for the design and implementation of effective anti-tumor therapies. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Antonis E Koromilas
- Lady Davis Institute for Medical Research-McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec H2W 1S6, Canada.
| |
Collapse
|
9
|
Koromilas AE, Mounir Z. Control of oncogenesis by eIF2α phosphorylation: implications in PTEN and PI3K-Akt signaling and tumor treatment. Future Oncol 2014; 9:1005-15. [PMID: 23837763 DOI: 10.2217/fon.13.49] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
mRNA translation plays an important role in tumor development and represents a valid target of pharmaceutical intervention in cancer. A key step in mRNA translation involves the regulation of initiation by the eukaryotic initiation factor eIF2. Eukaryotic cells respond to various forms of stress by inducing the phosphorylation of the α-subunit of eIF2 at S51, a modification that leads to protein synthesis inhibition. Phosphorylated eIF2α can act either as a promoter of cell survival or an inducer of cell death in response to distinct stimuli. Increased eIF2α phosphorylation has a cytoprotective function in response to genetic or pharmacological inhibition of the PI3K-Akt pathway but also exhibits a proapoptotic function downstream of the PTEN tumor suppressor, independent of PI3K-Akt signaling inhibition. The functional interplay between the PI3K-Akt and eIF2α phosphorylation pathways may have important implications in the design of anti-tumor therapies that depend on the cell fate decisions of phosphorylated eIF2α.
Collapse
|
10
|
Tuval-Kochen L, Paglin S, Keshet G, Lerenthal Y, Nakar C, Golani T, Toren A, Yahalom J, Pfeffer R, Lawrence Y. Eukaryotic initiation factor 2α--a downstream effector of mammalian target of rapamycin--modulates DNA repair and cancer response to treatment. PLoS One 2013; 8:e77260. [PMID: 24204783 PMCID: PMC3808413 DOI: 10.1371/journal.pone.0077260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
In an effort to circumvent resistance to rapamycin – an mTOR inhibitor - we searched for novel rapamycin-downstream-targets that may be key players in the response of cancer cells to therapy. We found that rapamycin, at nM concentrations, increased phosphorylation of eukaryotic initiation factor (eIF) 2α in rapamycin-sensitive and estrogen-dependent MCF-7 cells, but had only a minimal effect on eIF2α phosphorylation in the rapamycin-insensitive triple-negative MDA-MB-231 cells. Addition of salubrinal – an inhibitor of eIF2α dephosphorylation – decreased expression of a surface marker associated with capacity for self renewal, increased senescence and induced clonogenic cell death, suggesting that excessive phosphorylation of eIF2α is detrimental to the cells' survival. Treating cells with salubrinal enhanced radiation-induced increase in eIF2α phosphorylation and clonogenic death and showed that irradiated cells are more sensitive to increased eIF2α phosphorylation than non-irradiated ones. Similar to salubrinal - the phosphomimetic eIF2α variant - S51D - increased sensitivity to radiation, and both abrogated radiation-induced increase in breast cancer type 1 susceptibility gene, thus implicating enhanced phosphorylation of eIF2α in modulation of DNA repair. Indeed, salubrinal inhibited non-homologous end joining as well as homologous recombination repair of double strand breaks that were induced by I-SceI in green fluorescent protein reporter plasmids. In addition to its effect on radiation, salubrinal enhanced eIF2α phosphorylation and clonogenic death in response to the histone deacetylase inhibitor – vorinostat. Finally, the catalytic competitive inhibitor of mTOR - Ku-0063794 - increased phosphorylation of eIF2α demonstrating further the involvement of mTOR activity in modulating eIF2α phosphorylation. These experiments suggest that excessive phosphorylation of eIF2α decreases survival of cancer cells; making eIF2α a worthy target for drug development, with the potential to enhance the cytotoxic effects of established anti-neoplastic therapies and circumvent resistance to rapalogues and possibly to other drugs that inhibit upstream components of the mTOR pathway.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cellular Senescence/drug effects
- Cinnamates/pharmacology
- DNA Repair/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/radiation effects
- Eukaryotic Initiation Factor-2/antagonists & inhibitors
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Female
- Gamma Rays
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Morpholines/pharmacology
- Peptidomimetics/pharmacology
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Pyrimidines/pharmacology
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Transgenes
- Vorinostat
Collapse
Affiliation(s)
- Liron Tuval-Kochen
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Paglin
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- * E-mail:
| | - Gilmor Keshet
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaniv Lerenthal
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charles Nakar
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Tamar Golani
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Tel-Hashomer, Ramat-Gan, Israel
| | - Joachim Yahalom
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Raphael Pfeffer
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
11
|
Kusio-Kobialka M, Podszywalow-Bartnicka P, Peidis P, Glodkowska-Mrowka E, Wolanin K, Leszak G, Seferynska I, Stoklosa T, Koromilas AE, Piwocka K. The PERK-eIF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle 2012; 11:4069-78. [PMID: 23095523 PMCID: PMC3507502 DOI: 10.4161/cc.22387] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of adaptive mechanisms plays a crucial role in cancer progression and drug resistance by allowing cell survival under stressful conditions. Therefore, inhibition of the adaptive response is considered as a prospective therapeutic strategy. The PERK-eIF2α phosphorylation pathway is an important arm of the unfolded protein response (UPR), which is induced under conditions of endoplasmic reticulum (ER) stress. Our previous work showed that ER stress is induced in chronic myeloid leukemia (CML) cells. Herein, we demonstrate that the PERK-eIF2α phosphorylation pathway is upregulated in CML cell lines and CD34+ cells from CML patients and is associated with CML progression and imatinib resistance. We also show that induction of apoptosis by imatinib results in the downregulation of the PERK-eIF2α phosphorylation arm. Furthermore, we demonstrate that inactivation of the PERK-eIF2α phosphorylation arm decreases the clonogenic and proliferative capacities of CML cells and sensitizes them to death by imatinib. These findings provide evidence for a pro-survival role of PERK-eIF2α phosphorylation arm that contributes to CML progression and development of imatinib resistance. Thus, the PERK-eIF2α phosphorylation arm may represent a suitable target for therapeutic intervention for CML disease.
Collapse
|
12
|
Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 2012; 3:307-21. [PMID: 22585904 PMCID: PMC3649462 DOI: 10.3945/an.112.002113] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of mRNA translation is a rapid and effective means to couple changes in the cellular environment with global rates of protein synthesis. In response to stresses, such as nutrient deprivation and accumulation of misfolded proteins in the endoplasmic reticulum, phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α~P) reduces general translation initiation while facilitating the preferential translation of select transcripts, such as that encoding activating transcription factor 4 (ATF4), a transcriptional activator of genes subject to the integrated stress response (ISR). In this review, we highlight the translational control processes regulated by nutritional stress, with an emphasis on the events triggered by eIF2α~P, and describe the family of eukaryotic initiation factor 2 kinases and the mechanisms by which each sense different stresses. We then address 3 questions. First, what are the mechanisms by which eIF2α~P confers preferential translation on select mRNA and what are the consequences of the gene expression induced by the ISR? Second, what are the molecular processes by which certain stresses can differentially activate eIF2α~P and ATF4 expression? The third question we address is what are the modes of cross-regulation between the ISR and other stress response pathways, such as the unfolded protein response and mammalian target of rapamycin, and how do these regulatory schemes provide for gene expression programs that are tailored for specific stresses? This review highlights recent advances in each of these areas of research, emphasizing how eIF2α~P and the ISR can affect metabolic health and disease.
Collapse
|
13
|
Moreno-Torres M, Murguía JR. Between Scylla and Charibdis: eIF2α kinases as targets for cancer chemotherapy. Clin Transl Oncol 2011; 13:442-5. [PMID: 21775270 DOI: 10.1007/s12094-011-0680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The eIF2α kinases integrate translation initiation rates with nutrient availability, thus allowing cells to adapt to nutrient scarcity. Recent evidence has uncovered new functions of these kinases in tumour cell biology, ranging from regulation of cell cycle progression, maintenance of genome stability, control of apoptosis, and cell survival under nutrient stress and hypoxia. Accordingly, active eIF2α kinases modulate the antineoplasic activity of several antitumour drugs, either by exacerbating their cytotoxic effect or by promoting chemoresistance. Understanding of eIF2α kinases molecular roles may provide mechanistic insights into how tumour cells sense and adapt to nutrient restriction, thus helping to implement more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Department of Stress Biology, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | | |
Collapse
|