1
|
Parkkinen I, Their A, Asghar MY, Sree S, Jokitalo E, Airavaara M. Pharmacological Regulation of Endoplasmic Reticulum Structure and Calcium Dynamics: Importance for Neurodegenerative Diseases. Pharmacol Rev 2023; 75:959-978. [PMID: 37127349 DOI: 10.1124/pharmrev.122.000701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca2+), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity. The brain itself is high in lipid content, and many structural lipids are produced, in part, by the ER. Cholesterol and steroid synthesis are strictly regulated in the ER of the blood-brain barrier protected brain cells. The high Ca2+ level in the ER lumen and low cytosolic concentration is needed for Ca2+-based intracellular signaling, for synaptic signaling and Ca2+ waves, and for preparing proteins for correct folding in the presence of high Ca2+ concentrations to cope with the high concentrations of extracellular milieu. Particularly, ER Ca2+ is controlled in axodendritic areas for proper neurito- and synaptogenesis and synaptic plasticity and remodeling. In this review, we cover the physiologic functions of the neuronal ER and discuss it in context of common neurodegenerative diseases, focusing on pharmacological regulation of ER Ca2+ Furthermore, we postulate that heterogeneity of the ER, its protein folding capacity, and ensuring Ca2+ regulation are crucial factors for the aging and selective vulnerability of neurons in various neurodegenerative diseases. SIGNIFICANCE STATEMENT: Endoplasmic reticulum (ER) Ca2+ regulators are promising therapeutic targets for degenerative diseases for which efficacious drug therapies do not exist. The use of pharmacological probes targeting maintenance and restoration of ER Ca2+ can provide restoration of protein homeostasis (e.g., folding of complex plasma membrane signaling receptors) and slow down the degeneration process of neurons.
Collapse
Affiliation(s)
- Ilmari Parkkinen
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Anna Their
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Muhammad Yasir Asghar
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Sreesha Sree
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Muraleva NA, Kozhevnikova OS, Zhdankina AA, Stefanova NA, Karamysheva TV, Fursova AZ, Kolosova NG. The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMD-like retinopathy in OXYS rats. Cell Cycle 2015; 13:3499-505. [PMID: 25483086 DOI: 10.4161/15384101.2014.958393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Age-related macular degeneration (AMD), a neurodegenerative and vascular retinal disease, is the leading cause of blindness in the developed world. Accumulating evidence suggests that alterations in the expression of a small heat shock protein (αB-crystallin) are involved in the pathogeneses of AMD. Here we demonstrate that senescence-accelerated OXYS rats-an animal model of the dry form of AMD-develop spontaneous retinopathy against the background of reduced expression of αB-crystallin in the retina at the early preclinical stages of retinopathy (age 20 days) as well as at 4 and 24 months of age, during the progressive stage of the disease. The level of αA-crystallin expression in the retina of OXYS rats at all the ages examined was no different from that in disease-free Wistar rats. Treatment with the mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) from 1.5 to 4 months of age, 250 nmol/kg, increased the level of αB-crystallin expression in the retina of OXYS rats. SkQ1 slowed the development of retinopathy and reduced histological aberrations in retinal pigment epithelium cells. SkQ1 also attenuated neurodegenerative changes in the photoreceptors and facilitated circulation in choroid blood vessels in the retina of OXYS rats; this improvement was probably linked with the restoration of αB-crystallin expression.
Collapse
|